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Abstract

This paper shows how to control a robot with omnidirectional
wheels, using as example robots with four motors, and generalizing
to n motors. More than three wheels provide redundancy: many com-
binations of motors speeds can provide the same Euclidean movement.
Since the system is over-determined, we show how to compute a set
of consistent and optimal motor forces and speeds using the pseudoin-
verse of coupling matrices. This approach allows us also to perform
a consistency check to determine whether a wheel is slipping on the
floor or not. We show that it is possible to avoid wheel slippage by
driving the robot with a motor torque under a certain threshold.

1 Omnidirectional Wheels

Omnidirectional wheels have become popular for mobile robots, because they
allow them to drive on a straight path from a given location on the floor to
another without having to rotate first. Moreover, translational movement
along any desired path can be combined with a rotation, so that the robot
arrives to its destination at the correct angle.
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Figure 1: Our omnidirectional wheel design

Omnidirectional wheels are all based on the same general principle: while the
wheel proper provides traction in the direction normal to the motor axis, the
wheel can slide frictionless in the motor axis direction. In order to achieve
this, the wheel is built using smaller wheels attached along the periphery
of the main wheel. Fig. 1 shows an example of the kind of wheels that we
have been using for our omnidirectional robots since 2002. Our wheel is a
variation of the so-called Swedish wheels, which use rollers with a rotation
direction which is not parallel nor perpendicular to the motor axis.

Figure 2: Our omnidirectional four-wheeled robot

Two or more omnidirectional wheels are used to drive a robot. Each wheel
provides traction in the direction normal to the motor axis and parallel to
the floor. The forces add up and provide a translational and a rotational
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motion for the robot. If it were possible to mount two orthogonally oriented
omnidirectional wheels right under the center of a robot with a circular base,
then driving the robot in any desired direction (without rotation) would
be trivial. To give the robot a speed (vx, vy), with respect to a cartesian
coordinate system attached to the robot, each wheel would just have to
provide one of the two speed components.

However, since the wheels and motors need some space, this simple arrange-
ment is not possible (the robot would be also very unstable!). The wheels
are usually mounted on the periphery of the chassis. More than two wheels
can be used, which makes it also easier to cancel any rotational torque which
could make difficult to drive the robot on a straight path. Popular configu-
rations are three and four-wheeled omnidirectional robots. Fig. 2 shows the
CAD design of the omnidirectional robot which we used at RoboCup 2004
in Lisbon.

Each wheel can move the robot forward, but since they are located on the
periphery of the robot, they can also rotate the robot’s frame. In order to
derive the relationship between the motors’ torques and the movement of the
robot, we need to analyze the geometry of the problem.

Figure 3: Arrangement of the wheels and distribution of forces

Let us use a motor with four wheels as our first example. For simplicity,
the robot has two symmetry axes, as shown in the diagram (Fig. 3). Let
us call ϕ the angle of the wheels with respect to the horizontal axis (the

3



x-direction), as shown on the diagram. When the four motors are activated,
we obtain four traction forces F1, F2, F3, F4 from the motors, which add up
to a translational force and a rotational torque. Each traction force Fi is the
torque of the motor multiplied by the radius of the wheel. The sum of the
forces depends on the exact wheel arrangement.

2 Force Coupling matrix

We are interested in the movement of the robot along the x and y direction. In
order to simplify the expressions we will derive, we consider the instantaneous
acceleration and velocity of the robot with respect to its own reference frame.
For example, a robot moving forward will have a certain positive velocity in
the y direction and zero in the x direction. We call the translational velocity
and the angular velocity of the robot the “Euclidean magnitudes”, different
from the individual motor speeds and accelerations.

The translational acceleration of the center of mass of the robot (which we
assume is located at the geometrical center of our circular robot), is given by

a =
1

M
(F1 + F2 + F3 + F4)

where M is the mass of the robot. The angular acceleration is given by

ω̇ =
R

I
(f1 + f2 + f3 + f4)

where R is the radius of the robot, fi denotes the magnitude of the force Fi,
for i = 1, . . . , 4, and I is the moment of inertia. The computation is possible
using this expression, because the forces are tangent to the circular frame of
the robot and point in the same rotational direction, so that we can work
just with the magnitudes of the force vectors. The magnitudes f1, f2, f3, f4

can be positive or negative, according to the direction of rotation of the
motor (counterclockwise or clockwise). The positive rotation directions are
as shown in Fig. 3.

We can compute the x and y components of the robot’s acceleration, by
considering the respective components of each force. Then from the geometry
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of the problem, shown in Fig. 3,

Max = −f1sin ϕ− f2sin ϕ + f3sin ϕ + f4sin ϕ

and
May = f1cos ϕ− f2cos ϕ− f3cos ϕ + f4cos ϕ

For a homogeneous cylinder I = 1
2
MR2, for a ring I = MR2. For any

mass distribution strictly between a concentration of mass in the middle and
concentration in the periphery, I = αMR2, with 0 ≤ alpha ≤ 1. We can
express the above acceleration equations as a matrix vector multiplication

(ax, ay, ω̇)T =
1

M

 −sin ϕ −sin ϕ sin ϕ sin ϕ
cos ϕ −cos ϕ −cos ϕ cos ϕ
MR

I
MR

I
MR

I
MR

I




f1

f2

f3

f4


Using I = αMR2, the expresion can be simplified to

(ax, ay, ω̇)T =
1

M

 −sin ϕ −sin ϕ sin ϕ sin ϕ
cos ϕ −cos ϕ −cos ϕ cos ϕ

1
αR

1
αR

1
αR

1
αR




f1

f2

f3

f4


We can further simplify this matrix by using the same units (meters per
second) for the planar and angular acceleration. Instead of operating with ω̇
we can work with Rω̇. The new expression is then

(ax, ay, Rω̇)T =
1

M

 −sin ϕ −sin ϕ sin ϕ sin ϕ
cos ϕ −cos ϕ −cos ϕ cos ϕ

1
α

1
α

1
α

1
α




f1

f2

f3

f4


We call the 3 × 4 matrix in the expression above the force coupling matrix
Cα.

Given any four motor states (and the associated torques) it is then straight-
forward to compute the acceleration in the x and y directions, as well as the
tangential acceleration of the robot’s frame periphery.
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Note that the forces can cancel. If, for example, f1 = f3 = 1, and f2 = f4 =
−1, then the robot stands still while the wheels work against each other.
Much energy is wasted, but the robot does not move.

We are assuming here that the wheels cannot slip, that is, all the torque from
the motors is transmitted to the robot via the floor. This is an unrealistic
assumption which we discuss further down.

It is interesting to note from the above expression, that the rotational accel-
eration depends on the mass distribution of the robot. A point-mass robot
can be accelerated infinitely fast around its center (α = 0). A robot where
the mass is distributed on a ring with very large radius (larger than the robot
itself) will be accelerated around its center very slowly (because α � 1).

Figure 4: Total number of effective motor force in all directions around the
origin for a four-wheeled asymmetrical omnidirectional robot

It is also interesting to visualize how many motors cooperate effectively when
driving forwards or sideways. For a symmetrical robot with four motor axis
at ϕ = 30 degrees, driving forward can be done faster than driving sideways
(s9nce the wheels point more towards the front). Fig. ?? shows how many
“effective motors” we have in each direction. When accelerating forward the
four motors are equivalent to 4cos ϕ = 3.7 motors. When driving sideways,
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is is only equivalent to around 1.8 motors. When going diagonally at 45
degrees, the effective acceleration corresponds to the force of two motors.

3 Euclidean magnitudes

We can compute the final velocities of the wheels, and the velocity of the
robot on the plane, as well as its angular velocity, by integrating the move-
ment equations with respect to time. However, we have to think of the robot
in Euclidean space, compute its trajectory there, and derive from this the
velocity of each individual wheel. First let us look at the geometry of the
problem.

Let us group the individual speeds of the four motors in the vector (v1, v2, v3, v4)
T

and the Euclidean velocity and tangential rotational speed of the robot in
the vector (vx, vy, Rω)T. If the robot is moving as determined by the vector
(1, 0, 0), this means that it is moving sideways without rotating. When the
robot moves with speed 1 to the right, the wheels rotate with speed sin ϕ
(with the appropriate sign). This is easy to see from the diagram in Fig. 5.
The large wheel provides one of the components of the horizontal movement
(that is, sin ϕ), while the small peripheral wheels provide the other orthogo-
nal component (i.e. cos ϕ).

Figure 5: Rotation of large and small wheels, when the robot moves sideways.

The same kind of computation can be done when the robot is moving forward
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without rotating.The wheel movement is then the component cos ϕ. Using
the convention that the positive rotation direction is the direction of the right-
hand thumb when we hold the motor axis in the hand, we obtain the following
expression for the correspondences between the Euclidean and motor speeds:

(v1, v2, v3, v4)
T =


−sin ϕ cos ϕ 1
−sin ϕ −cos ϕ 1

sin ϕ −cos ϕ 1
sin ϕ cos ϕ 1


 vx

vy

Rω


The matrix in this expression is very similar to the transpose of the coupling
matrix Cα. This matrix, which we denote by D, is the velocity coupling
matrix.

Let us denote the vector (ax, ay, Rω̇)T by a, the vector (f1, f2, f3, f4)
T by f ,

and the vector of motors speeds (v1, v2, v3, v4)
T by m. Then the following

identities hold
a = Cαf
m = Dv

Integrating over a time interval ∆t, we have ∆v = ∆t × a, that is, ∆m =
∆t×DCαf .

The motors have tick counters which allow to measure their speed in real
time with the on-board electronics. For the purpose of controlling the robot,
we want to know how measured wheel speeds m = (v1, v2, v3, v4)

T map to the
Euclidean magnitudes v = (vx, vy, Rω)T, that is, we would like to invert the
expression m = Dv. This is not possible in general because the matrix D is
not a square one, and therefore, is not invertible. However, we can look for
a matrix D+ such that D+D = I3, where I3 is the 3 × 3 identity matrix. If
such a matrix exists, then given Euclidean magnitudes v it is possible to find
the corresponding wheel speeds m, which, in turn, reproduce the original
Euclidean magnitudes. This is so because if

m = Dv

Then
D+m = (D+D)v = I3v = v

The matrix D+ exists, it is the so-called pseudoinverse of the matrix D. In
the special case of a robot with two symmetry axes and the same angle ϕ
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for each motor axis, we can even write down a simple expression for D+.
Assuming that sin ϕ and cos ϕ are both different from zero, then

D+ =
1

4

 − 1
sinϕ

− 1
sinϕ

1
sinϕ

1
sinϕ

1
cosϕ

− 1
cosϕ

− 1
cosϕ

1
cosϕ

1 1 1 1


It is straightforward to check that D+D = I3. It can also be checked that
D+ has all the properties of the pseudoinverse of D.1

Summarizing: the matrix Cα transforms the traction forces of the motors
into Euclidean accelerations. The matrix D transforms Euclidean speeds
into motor speeds. If we accelerate the motors for a time interval ∆t, then,
as we saw above, the additional Euclidean speeds are proportional to the
motor forces according to the expression

(∆v1, ∆v2, ∆v3, ∆v4)
T = ∆t×DCα (f1, f2, f3, f4)

T

The product DCα can be computed and is equal to

DCα =
1

Mα


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 +
1

M


1 a −1 −a
a 1 −a −1
−1 −a 1 a
−a −1 a 1


where a = sin2 ϕ− cos2 ϕ. Therefore

∆v1

∆v2

∆v3

∆v4

 = ∆t

 1

Mα


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




f1

f2

f3

f4

 +
1

M


1 a −1 −a
a 1 −a −1
−1 −a 1 a
−a −1 a 1




f1

f2

f3

f4




What this expression shows is that if we keep the motor torques constant
and we integrate over time, there is a portion of the motor wheel velocities
which is due to the rotation of the robot (produced by the left matrix in the
expression), and another due to the movement on the plane. If α is small,
the motors can be accelerated fast when the motor torques cooperate (for

1Both D+D and DD+ are symmetric, D+DD+ = D+, and DD+D = D.
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example, when (f1, f2, f3, f4)
T = (1, 1, 1, 1)T). If α is large, it takes longer to

achieve the desired angular velocity than to achieve the desired translational
speed.

What the above expression implies is that we must decouple the control for
the Euclidean velocity from the control for the rotation. We then apply the
necessary wheel torques over a time ∆t in order to reach the velocity (vx, vy),
and on top of that, we overlay the necessary wheel accelerations for reaching
the angular velocity ω, but we apply these torques for a period ∆t′, different
in general from ∆t. The only robot for which we can have ∆t = ∆t′ is one
with α = 1. Such a robot corresponds to a ring of mass M and radius R,
that is, a robot with all its mass at the periphery.

4 Generalizing to n wheels

We can now generalize the points discussed above to an omnidirectional robot
with n ≥ 3 wheels. For this generalization assume that all the angles of the
motor axis are measured relative to the x direction in the coordinate system
of the robot. Call the angles of the motor axis for the n wheels θ1, θ2, . . . , θn.
The driving direction of the i-th wheel is therefore θi + π/2.

Arguing in the same way as in the previous section, and referring to Fig. 5,
we find that the velocities coupling matrix D for the Euclidean velocity and
rotational velocity of the robot is given by

(v1, v2, v3, v4)
T =


−sin θ1 cos θ1 1
−sin θ2 cos θ2 1

... . . . 1
−sin θn cos θn 1

 (vx, vy, Rω)T

This is an n× 3 matrix. It maps Euclidean and tangential rotational speeds
to motor speeds. D has the same function as in the case of the four motor
robot discussed previously.

If the rank of the coupling matrix is at least three, then for any given Eu-
clidean combination (vx, vy, ωR)T, there is a combination of motor speeds
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Figure 6: Arrangement of n wheels and distribution of forces

which can produce such movement.

Figure 7: Three different axis directions are independent

It is easy to see that the rank of the coupling matrix is at least three, when
at least three different motor axis directions have been chosen. Note that the
rows of the matrix D are of the form (−sin θi, cos θi, 1). These are vectors in
three dimensional space, going from the origin to the periphery of a circle of
radius 1 and positioned at z = 1 (see Fig. 7). Clearly, no three such different
vectors can lay on the same plane, that is, they are linearly independent,
and therefore the rank of the coupling matrix is at least three. It cannot be
greater than three, because the matrix has only three rows, so it is exactly
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three.

When the rank of an n× 3 matrix D is three, the product D+D is the 3× 3
identity matrix I3, where D+ denotes the pseudoinverse of D. We prove this
below, first let us examine an important consequence.

Given the vector of Euclidean and rotational velocities (vx, vy, ω)T , we com-
pute the needed motors speeds using the matrix D, obtaining

(v1, v2, . . . , vn)T = D(vx, vy, Rω)T

Applying these motors speeds we obtain the Euclidean and rotational velocity
back, because

D+(D(vx, vy, Rω)T ) = I3(vx, vy, Rω)T = (vx, vy, ω)T

The matrix D+, therefore, maps motor speeds to Euclidean velocities cor-
rectly. This is a formal proof of what we have been arguing in this paper,
that three omnidirectional wheels, at three different angles, are sufficient for
omnidirectional driving. The rest of the wheels (n− 3) provide redundancy
to the system.

It rests to prove that for the n × 3 matrix D, D+D = I3. We make use of
singular value decomposition. We know that any n × m matrix D can be
written as USV T , where U and V are orthogonal square matrices, and S is
an m × n diagonal matrix, with as many entries different from zero in the
diagonal, as the rank of the matrix. In our case S is a 3 × n matrix, with
three nonzero elements in the diagonal. The pseudoinverse for C is given by
the expression

D+ = V (ST S)−1ST UT

where ST S is an n×n diagonal matrix with three nonzero diagonal elements
σ1, σ2, σ3, and the rest n − 3 diagonal elements are equal to zero. (ST S)−1

is the n × n matrix with three diagonal non-zero elements 1/σ1, 1/σ2, 1/σ3,
and the rest of the elements equal to zero. The product D+D is then

D+D = V (ST S)−1ST (UT U)SV T = V (ST S)−1(ST S)V T = V IV T = I3

This completes our proof.
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It is easy to see that the force coupling matrix Cα for a robot with n wheels
at the angles θ1, . . . , θn is the matrix

Cα =
1

M

 −sin θ1 −sin θ2 . . . −sin θn

cos θ1 cos θ2 . . . cos θn
1
α

1
α

. . . 1
α


where M is the mass of the robot, and α the constant in the moment of
inertia I = αMR2. This matrix is the generalization of the matrix for the
four wheeled robot discussed in the previous section.

Having the force coupling matrix Cα for the motor tangential forces and
Euclidean accelerations, and also the velocities coupling matrix D for the
transformation of Euclidean velocities into motor velocities, it is possible to

• transform motor forces into Euclidean accelerations:

a = Cαf

• transform Euclidean accelerations into motor forces:

f = C+
α a

• transform Euclidean speeds into motor speeds:

m = Dv

• transform motor speeds into Euclidean speeds:

v = D+m

5 Wheel control of a four wheeled symmetri-

cal robot

Let us assume that we drive the motors in the form described above, for a
robot with four symmetrically mounted motor axis, starting from rest, and
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with forces f1, f2, f3, f4 in each motor for a time t, and that the wheels do not
slip on the ground. It is clear from the equations in the previous sections,
that if f1 + f2 + f3 + f4 = 0, the robot will not rotate around its center.
Can we find settings for the wheels, under this constraint, which allow us
to accelerate the robot in any desired Euclidean direction, without letting it
rotate? (That is, ax and ay can be arbitrary, within the velocity constraints
of the motors, while ω̇ is zero).

This is indeed the case, because in the equations

ax =
1

M
(−f1sin ϕ− f2sin ϕ + f3sin ϕ + f4sin ϕ)

and

ay =
1

M
(f1cos ϕ− f2cos ϕ− f3cos ϕ + f4cos ϕ)

the combination of forces p = (1,−1,−1, 1) drives the robot forward with
acceleration 4

M
cosϕ. The combination q = (1,−1,−1, 1) moves the robot

sideways to the right with acceleration 4
M

sinϕ. Any linear combination of
the two vectors, of the form

ax

sinϕ
q +

ay

cosϕ
p

accelerates the robot in the direction (ax, ay). Here we are assuming that nei-
ther cos ϕ nor sin ϕ are equal to zero, otherwise we would have a very simple
robot with four parallel wheels and this whole analysis would be unnecessary.

Also, since the sum of components of p and q is zero, any linear combination
of both vectors does not let the robot rotate. Therefore we have found a
vector of motor forces, for the desired direction, and which does not rotate
the robot.

Now let us compute the forces necessary for the desired angular velocity. The
vector r = (1, 1, 1, 1) does not produce any forward or sideways acceleration
(as can be tested by substituting in the acceleration equations). The angular
acceleration with r is given by

ω̇ =
(f1 + f2 + f3 + f4)

αR
=

4

αMR
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.

Therefore, we see that we can decouple the control problem for the robot
into two parts:

• We can find motor forces which accelerate the robot in the desired
Euclidean direction, without making it rotate.

• We can also find forces which provide angular acceleration for the robot,
without making it displace on the ground.

The sum of both set of forces is the force to be applied to the robot. However,
as explained before, the forces for the linear displacement must be applied
for a different total time as the forces for the rotation.

In our system, we send the desired final linear velocity (vx, vy) to the robot
and accelerate the wheels using a PID controller. Another PID controller
receives the desired final angular velocity ω and controls the wheels. Both
PID controllers are interleaved. The wheel accelerations overlap and we
obtain the desired robot behavior.

6 Control of a four wheeled asymmetrical robot

When the robot does not have two axes of symmetry, we have to be more
careful with the control of the wheels, as we show in this section.

Assume that the robot has four wheels, that the two motor axes in front are
positioned at angles ϕ with respect to the horizontal, and the two rear motors
at angle θ also with respect to the horizontal. The relationship between
Euclidean accelerations and motor forces is given by

(ax, ay, Rω̇)T =
1

M

 −sin ϕ −sin ϕ sin θ sin θ
cos ϕ −cos ϕ −cos θ cos θ

1
α

1
α

1
α

1
α

 (f1, f2, f3, f4)
T
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Figure 8: Arrangement of the wheels and distribution of forces for an asym-
metrical robot

The velocity coupling matrix D for motor and Euclidean speeds is now given
by

D =


−sin ϕ cos ϕ 1
−sin ϕ −cos ϕ 1

sin θ −cos θ 1
sin θ cos θ 1



From this expressions we can observe that motor forces proportional to
(−1,−1, 1, 1) produce an acceleration vector (ax, ay, ω̇)T = 2(sin ϕ+sin θ, 0, 0)T.
That is, for driving sideways we need the same absolute force from each mo-
tor, so that the robot does not rotate.

However, notice that now the increment of the velocities of the individual
wheels is different than in the case of the symmetrical robot. The increment
to wheel velocities is given (as shown before) by

(∆v1, ∆v2, ∆v3, ∆v4)
T = ∆t×DCα (f1, f2, f3, f4)

T
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The matrix DCα is now equal to

DCα =
1

Mα


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 +
1

M


1 a b c
a 1 c b
b c 1 d
c b d 1


where a = sin2 ϕ − cos2 ϕ, d = sin2 θ − cos2 θ, b = −sin ϕsin θ − cos ϕcos θ,
and c = −sin ϕsin θ +cos ϕcos θ. A combination of forces (−1,−1, 1, 1) leads
to motor speed increments equal to

∆v1

∆v2

∆v3

∆v4

 =


−1 + b + c− a
−1 + b + c− a
1− b− c + d
1− b− c + d


. As can be seen, the front wheels have the same increment in speed, which is
different from the increment in speed of the rear wheels. Curiously, although
the torques in all wheels are of the same magnitude (plus or minus one), the
final motor speeds are different in the front and rear motors. This clearly
shows that all forces are transmitted through the robot chassis and that
wheels accelerate according to the resultant of all forces involved.

The pseudoinverse of D can be computed with some algebraic effort. It is
given by

D+ =

 −i −i i i
j −j −(1− j) (1− j)
k k (1− k) (1− k)


where i = 1/(2sinϕ+2sinθ), j = cosϕ/(2cos2ϕ+2cos2θ), and k = sinθ/(2sinϕ+
2sinθ). It is easy to check that D+D = I3. Having Cα and D we can control
the robot in the usual way.

7 Critical force and a limit example

When we start all four motors used in our robots, the respective x and y com-
ponents of the torques work against each other. When the robot is rolling
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forward (in the positive y direction), for example, the force components side-
ways (in the x direction) cancel. However, if the forces being cancelled are
excessive, the wheels will lose their grip and will start to slip on the ground.
The result is a robot which cannot drive accurately enough.

Given a direction, let us call the maximum torque that a motor can put on
the floor in that direction and without slipping, the critical torque for that
direction. An extreme example can help to understand this concept.

Assume that in our four-wheeled robot the angle ϕ is very small and near to
90 degrees. In that case, the two frontal and the two rear wheels are almost
parallel. If all motors are started with maximum torque (1,−1,−1, 1), the
robot should move forward, because the resultant force on the robot has
only a component in the positive y direction. However, the opposing torques
are so large that the wheels will probably slip on the wheel and will start
spinning. The robot will move wildly on the floor.

Fig. 9 shows what percentage of the velocity of the robot is provided by the
small wheels when the robot is moving from the origin towards any angle
between 0 and 2π . The figure shows several curves for different motor axis
angles ϕ. At ϕ = 45 degrees, for example, the small wheels provide around
30% of the total speed, in any direction in the graph. When the motors are
positioned at ϕ = 30 degrees, then less than 15% of the forward velocity
is provided by the small wheels. However, when driving sideways, around
50% of the velocity comes from them. The extreme example are wheels with
motors at an angle of 9 degrees. When driving sideways, more than 80% of
the total speed is provided by the small wheels.

Different values of ϕ mean that different projections of the motor torques
have to be considered. If ϕ is almost zero, the wheels are almost parallel, are
aligned in the forward direction, and the robot can accelerate forward at the
limit imposed by the grip of the wheels on the carpet. The critical torque
limit is therefore related to the friction between the wheels and the carpet,
and the angle in which the wheels oppose each other.

In the limit case mentioned above (ϕ almost 90 degrees), if we are careful
enough to start the motors slowly, then the robot will be accelerated forward.
The forward movement is provided by the passive rolling wheels and the
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Figure 9: Contribution of the small wheels rotation to the total movement
as percentage, for all directions between zero and 2π. For the robot with
motors at 45 degrees, the percentage is constant in all directions.

wheels themselves have to roll very slowly. If the forward velocity of the
robot is vy, the needed tangential velocity of the wheel is vycos (ϕ). In other
words, if the motor can drive the wheel at a maximum speed of v, the robot
can reach a maximum forward speed of v/cos(ϕ), that is, the robot can be,
in the limit of ϕ = π/2, infinitely fast! This is so because the acceleration
on the robot is always present and the robot can roll forward passively. In
reality, the passive wheels have more and more friction with their axis the
faster they roll. Eventually this friction limits the forward acceleration of the
robot.
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8 How to drive without wheel slippage

Assume that you want to drive our robot forward, trying to avoid any sig-
nificant wheel slippage. Assume that it has been determined experimentally
that when the voltage for the DC motors is a maximum of 2 Volts the wheels
will not slip (we can do this by holding the robot, and increasing the voltage
until the wheels start to slip). We would like to drive as fast as possible
(that is, with the maximum possible voltage for the motors) but without
slipping. What we have to do then is to start the motors with V0 = 2 and
let the robot roll forward. After a few milliseconds, the induced current E
in the rotor decreases the effective voltage on the rotor’s solenoid to V0 −E,
and the motor torque correspondingly. We can now increase the value of
the voltage to V1 = V0 + E, and now the motor torque corresponds to the
effective voltage V0 + E − E = V0. Repeating this adjustment periodically,
allows us to drive the motors with the maximum possible torque which does
not let the wheels slip. Fig. 10 shows the result of a computer simulation for
a certain DC motor. As can be seen, the motor angular speed increases along
a curve. When the adjustment to the voltage is made (at discrete intervals)
the curve changes to the corresponding curve for the higher voltage. In the
limit, when the adjustment is made very often, the motor torque remains
constant, the wheel acceleration too, and the angular velocity of the motor
increases linearly. The slope of the curve is the maximum allowable acceler-
ation before the wheels slip. However: this result depends on a perfect mass
distribution so that all wheels exert the same pressure on the floor. This
assumption cannot be guaranteed when the robot is driving fast, because
acceleration can lift sometimes the front or side wheels from the floor, or at
least diminish the pressure they exert on the floor. Slipping wheels are a fact
of life and they have to be handled in the PID controller.

9 Identifying slipping wheels

Let us consider a symmetrical robot. Let us call m the four-dimensional
vector (v1, v2, v3, v4)

T of tangential motor speeds, D the velocities coupling
matrix, and v the three-dimensional vector (vx, vy, Rω)T. The fact that the
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Figure 10: Driving a DC motor with a constant torque

Euclidean velocities of the robot and the tangential velocities of the motors
are connected by the expressions

m = Dv v = D+m

gives us the possibility of testing for inconsistencies in the motors speed and
thus detect wheel slippage.

The controller on the robot gets the desired vector v by radio communication
and transforms v into the necessary motor speeds s. After some time, the tick
counters in the motors provide a vector of current motor speeds m′. We can
test if wheels are slipping using the in-built redundancy of our motor values.
Since v′ = D+m′ and m′ = Dv′, then it must be true that m′ = DD+m.
If not, then one or more wheels are slipping on the ground. It would be
extremely implausible that they all slip at a rate which allows the expression
to remain valid.
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A simple computation shows that for a symmetrical robot with angle ϕ:

DD+ =
1

4


3 1 −1 1
1 3 1 −1

−1 1 3 1
1 −1 1 3


Checking spinning wheels can be done very easily by multiplying with this
matrix, because we should obtain (I −DD+)m′ = 0. The matrix I −DD+

is given by

I −DD+ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− 1

4


3 1 −1 1
1 3 1 −1

−1 1 3 1
1 −1 1 3

 (1)

=
1

4


1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

 (2)

The consistency check, as this matrix shows, reduces to the test

v1 − v2 + v3 − v4 = 0

or equivalently
v1 + v3 = v2 + v4

that is, the sum of the speeds of motor 1 with its opposite motor 3, is equal
to the sum of the speed of motor 2 with its opposite motor 4. The speeds
used before, that is (1, 1, 1, 1) for rotation, (1 − 1,−1, 1) for going forward,
and (−1,−1, 1, 1) for driving sideways, they all fulfill the above consistency
check. Any linear combination of them passes also the consistency check.

It is interesting to note that this slippage check does not depend on the angle
ϕ. It is a universal test for omnidirectional four motor autonomous robots,
with wheels placed symmetrically at an angle ϕ.

Slippage check can be also computed for any other configuration of n motors.
We just have to compute the matrix (I −DD+), and this provides the check
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we need. Consistent motor speeds m satisfy all the condition (I−DD+)m =
0.

In the case of an asymmetrical robot with motor axis at angles ϕ and θ, we
can also compute algebraically the matrix (I −DD+).

10 Handling slipping wheels

If we detect that the the wheel rotation is not consistent, that is, that one
or more wheels are slipping, can we do something about it? As this section
shows, in principle we can try to correct the motor movement without control
losing time, that is, by doing a correction on top of the normal PID control.
Let us consider a symmetrical robot with the same angle ϕ for all motor axes
with respect to the horizontal.

First, note that there are motor torque combinations which do not accel-
erate the robot. One such combination, for a symmetrical robot, is f =
(1,−1, 1,−1). The wheels pull in the forward and backward direction simul-
taneously. In such a case, the Euclidean magnitudes are zero, i.e.

a = Cαf = 0

This means that the vector f is an element of the kernel of Cα (the set of
vectors mapped to zero by this matrix).

Interestingly, if we have two combinations f and f ′ of motor forces which
produce the same Euclidean accelerations a, then

a = Cαf

and
a = Cαf ′

Therefore
Cα(f − f ′) = 0

This means that f − f ′ belongs to the kernel of Cα. Also, if the vector g
belongs to the kernel of Cα, then the vector of forces f produces the same
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accelerations as the vector of forces f + g because

a = Cα(f + g) = Cαf + Cαg = Cαf

For a robot with four wheels the rank of the matrix Cα is exactly three (we
showed this in section x). Since the sum of the rank of an n×m matrix and the
dimension of the kernel is equal to max(n, m), this means that the dimension
of the kernel of Cα is one. This in turn implies that any vector in the kernel
of Cα is of the form λ(1,−1, 1,−1). Curiously enough, this is the first row in
the matrix (I −DD+) computed in the previous section for a four-wheeled
symmetrical robot. What this means is that motor speeds (v1, v2, v3, v4) are
consistent if they are orthogonal to the kernel of the matrix Cα, that is, to
all vectors of the form λ(1,−1, 1,−1). Motor speeds are inconsistent if they
include a projection in the direction of the vector (1,−1, 1,−1). The solu-
tion? If we have inconsistent motor speeds m = (v1, v2, v3, v4)

T, we compute
the projection of m in the direction of the unit vector 1

2
(1,−1, 1,−1)T and

subtract it from m. The corrected m is thus:

m′ = m− (m · 1

2
(1,−1, 1,−1)T)

1

2
(1,−1, 1,−1)T

The correction can be simplified to

m = m− v1 − v2 + v3 − v4

4
(1,−1, 1,−1)T

We can visualize this result as follows: in the four dimensional space of motor
values, there is a three dimensional subspace of consistent and non-slipping
motor values (a three-dimensional hyperplane). Normal to this hyperspace
we have the vector of wheel speeds (1,−1, 1,−1). Anytime wheels are slip-
ping, we are wasting energy because the vector of motor values contains a
component in the (1,−1, 1,−1) direction. What we have to do is to orthog-
onally project the vector of motor values back onto the hyperplane of con-
sistent motor values, by just subtracting the component in the (1,−1, 1,−1)
direction.

Incidentally, when we map Euclidean accelerations a to motor forces f , we
always obtain consistent results because we use the expression

f = C+
α a
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Since Cα and C+
α are both of rank three, accelerations a (in three-dimensional

space) are mapped one-to-one to forces f (in a three-dimensional subspace of
the four-dimensional space). If this three dimensional subspace would include
any element g of the kernel of Cα, then there would exist an acceleration a,
different from zero, such that g = C+

α a. Since Cαg = 0, then we would not
have a = CαC+

α a, as we should have.

Also, if g belongs to the kernel of Cα, any force of the form f +g is equivalent
to f , because Cαf = Cα(f + g). For an acceleration a, there is a unique
force f such that f = C+

α a. Since f is always smaller in length than f + g
(because g is orthogonal to the subspace where f lives), we have the optimal
situation where the forces computed require the minimal consumption of
energy. Motors do not waste energy, when force combinations in the kernel
of Cα are avoided.

11 Driving without one motor

It can happen that a robot loses one of the four motors while driving because
the rotor contacts evaporate (this can happen when the motor is driven at
very high speeds over its voltage specification). The advantage of a four
motor robot is that it can recover from such a loss. It can continue to drive
accurately and can still behave as an omnidirectional robot.

Assume, for example, that the first motor in Fig. 3 malfunctions. The wheel
can still roll, but the motor does not provide torque. In that case in the
set of motor forces (f1, f2, f3, f4), f1 is always zero. However, the three
remaining motors can still drive the robot forward, sideways, and can let
it rotate. Furthermore, the necessary motor torques are independent. The
vector p = (0, 0,−1, 1) of motor forces moves the robot forward without
letting it rotate, the vector q = (0,−1, 1, 0) moves the robot sideways to the
right without letting it rotate, and the vector of forces r = (0, 1, 0, 1) rotates
the robot counterclockwise, without displacing its center of mass. It is easy
to see that these (and multiples of them) are the only torque combinations
with such properties.
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As before, we can decouple the displacement of the robot from the rotation.
We modify the control strategy programmed in the PID controller in the
robot. We can drive the robot in the direction (vx, vy) by setting a combina-
tion of forces proportional to

vx

sin(ϕ)
q +

vy

cos(ϕ)
p.

The robot will accelerate in the desired direction, and the two inactive mo-
tors will roll passively, without causing major problems. On top of that
movement, we can let the robot rotate using any multiple of the vector of
forces r. The PID controller will not try to provide power from the two “dis-
connected” motors. Of course, the robot will be only half as fast as before,
because we will be using only half of the motor power, but the robot will be
still manageable.

If two, even three, motors are damaged it is still possible to drive with the
robot, but it ceases to be omnidirectional. In that case the high-level control
must change the sequence of commands sent to the robot.
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