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Safe Multirobot Navigation
Within Dynamics Constraints
In fast robot soccer games, teams play without any human input, avoiding collisions

and obstacles and coordinating action to implement team strategy and tactics.

By James R. Bruce and Manuela M. Veloso

ABSTRACT | This paper introduces a refinement of the classical

sense–plan–act objective maximization method for setting

agent goals, a real-time randomized path planner, a bounded

accelerationmotion control system, and a randomized velocity-

space search for collision avoidance of multiple moving ro-

botic agents. We have found this approach to work well for

dynamic and unpredictable domains requiring real-time re-

sponse and flexible coordination of multiple agents. First, the

approach employs randomized search for objective maximi-

zation and motion planning, allowing real-time or any-time

performance. Next, a novel cooperative safety algorithm is

employed which respects agent dynamics limitations while

also preventing collisions with static obstacles or other partici-

pating agents. An implementation of our multilayer approach

has been tested and validated on real robots, forming the basis

for an autonomous robotic soccer team.

KEYWORDS | Mobile robots; motion-planning; multirobot;

navigation; robot dynamics

I . INTRODUCTION

For the past eight years, we have been pursuing research

into teams of autonomous robots acting in adversarial, dy-

namic environments. We have used robot soccer as the

underlying testbed and research platform, and have par-

ticipated in several leagues in the RoboCup [1] robot

soccer competition. In each league, teams of robots play a
competitive match modeled after soccer, and during the

match the teams must operate fully autonomously without

any human input. This work is particularly motivated by

our team in the small-size robot soccer league, which of-

fers very interesting multirobot coordination opportuni-
ties. Briefly, the team of robots can be observed from one

or more external vision cameras, usually hung above the

field. This external sensing provides a global view of the

state of the complete playing field. Specifically, this in-

cludes position of the the ball, as well as the locations of

teammate and opponent robots. The global state informa-

tion is used by offboard computing for effective team

coordination and control. Within this domain, several
teams have reached extremely impressive levels of perfor-

mance in multiple aspects of multirobot systems, including

real-time vision processing, mechanical robot design and

control, and coordination. These accomplishments led to

very fast games where robots can move at over 2 m/s and

the ball moves at speeds of up to 10 m/s.

Motivated by this challenging multirobot scenario, we

have focused on investigating the general navigation
problems that it poses. In particular, the offboard sensing

removes the world-state estimation bottleneck present on

many robotics systems, allowing the navigation problem

itself to come to the fore. Effective multirobot path navi-

gation can be a very complex problem, especially in highly

dynamic environments, such as our robot soccer task.

Robots need to rapidly navigate, avoiding each other and

obstacles while aiming to reach specific objectives. At the
same time, the speeds reached mean that limitations on

agent dynamics cannot be ignored. Finally, the navigation

approach has to fit within an overall system, as it must be

controllable by a behavior system as its input and provide

meaningful commands as output to the local robot control

loops in order to carry out the objective goals.

In searching for a solution to the navigation problem

posed by this domain, we have looked for general solutions
which can be used beyond robot soccer. In particular, we

have taken a modular, layered approach, where the inter-

faces between modules are of relatively wide applicability,
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and within each module relatively general models of a
mobile agent are assumed. In our approach, the planning

aspect of the sense–plan–act loop is expanded into several

layers. The first layer is a task-oriented evaluation of the

sensed location, defining target points that each robot

needs to achieve through objective functions. The next

layer is a factored motion planning approach for the mul-

tiple agents. This is followed by motion control to define a

velocity target for each of the agents. Finally, the last layer
employs a cooperative safety algorithm to prevent colli-

sions between the multiple agents, while respecting their

dynamics constraints.

Throughout our design and algorithms, we assume a

system where the robotic agents are distributed, but deci-

sions are made in a centralized fashion. In particular, all

agents share a common world state with only pure Gaussian

noise in state estimates, and we assume perfect commu-
nication of actions between all agents. Though centralized,

the system is still distinct from a completely monolithic

design where all agents share a single world-state vector

and joint action space. First, the execution time of our

approach scales at worst quadratically with the number of

agents (rather than the exponential scaling typical of a

monolithic design). Second, the state required to be

broadcast by each agent during a control cycle is of fixed
size, and is therefore not a function of the the complexity of

multiagent interactions or the per-agent local calculations.

Thus, although centralized, the approach presented in this

paper is closer to meeting the restrictions of a practical

distributed algorithm, and we expect it would serve as a

good starting point for such a future development.

This paper briefly addresses the setting of objectives

and motion planning, and then focuses in detail on our
novel multirobot safety method. The presentation is

organized as follows. Section II presents the small-size

robot soccer league in more detail. Section III discusses

our approach for role selection and setting of objectives for

the multirobot team. Section IV describes the algorithms

for multirobot path planning, followed by motion control

in Section V. Section VI then describes how we have

achieved safe navigation as a postprocess to planning and
motion control. Section VII shows empirical results and

Section VIII concludes the paper. Related work is dis-

cussed throughout the presentation.

II . SMALL-SIZE MULTIROBOT SOCCER

The RoboCup small-size league involves teams of five

small robots, each up to 18 cm in diameter and 15 cm in
height. The field of play is a carpet measuring 4.9 m by

3.8 m, with a 30-cm border around the field for posi-

tioning outside the field of play (such as for free kicks). A

game played on an earlier (half-size) version of the field is

pictured in Fig. 1. Since its start in 1997, the league has

seen rapid advances in both algorithms and hardware, and

has emerged with an emphasis on speed and flexible coor-

dination. Four generations of our small-size robots are

shown in Fig. 2.

Offboard communication and computation is allowed,

leading nearly every team to use a centralized approach for
most of the robot control. The data flow in our system,

typical of most teams, is shown in Fig. 3 [2]. Sensing is

provided by two or more overhead cameras, feeding into a

central computer to process the image and locate the ten

robots and the ball on the field 30–60 times per second.

These locations are fed into an extended Kalman filter for

tracking and velocity estimation, and then sent to a

Bsoccer[ module which implements the team strategy
using various techniques. The three major parts of the

soccer system are: 1) world-state evaluation; 2) tactics and

skills; and 3) navigation. World-state evaluation involves

determining high level states about the world, such as

whether the team is on offense or defense. It also involves

finding and ranking possible subgoals, such as evaluating a

good location to receive a pass. Tactics and skills imple-

ment the primitive behaviors for a robot, and can range
from the simple Bgo to point[ skill, up to complex tactics

such as Bpass[ or Bshoot.[ A role in our system is defined as

a tactic with all parameters fully specified, which is then

assigned to a robot to execute. Given these parameters,

Fig. 1. Two teams are shown playing soccer in the RoboCup

small-size league.

Fig. 2. Four generations of Carnegie Mellon robots: (from left) 1997,

1998–99, 2001, 2002–03.
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along with the world state, the tactic generates a navi-

gation target either directly or by invoking lower level

skills with specific parameters. Finally, these navigation
targets are passed to a navigation module, which employs

randomized path planning, motion control, and dynamic

obstacle avoidance. The resulting velocity commands are

sent to the robots via a serial radio link. Due to its

competitive nature, over the years teams have pushed the

limits of robotic technology, with the some small robots

traveling over 2 m/s, with accelerations between 3 and

6 m/s2, and kicking the ball used in the game at up to
10 m/s. Their speeds require every module to run in real

time to minimize latency, all while leaving enough com-

puting resources for all the other modules to operate. In

addition, all the included algorithms involved must op-

erate robustly due to the full autonomy requirement.

Two parts of our soccer system which have proven

stable in design over the several iterations of our team are

the world-state evaluation for position determination and
navigation module for real-time motion planning. Thus,

these two modules will be the focus of this paper. First,

determining supporting roles through objective functions

and constraints has proven a very natural and flexible way

of allowing multiple robots to support an active player on

offense and to implement defensive strategies on defense.

This paper will describe the common elements of this

module which have been present throughout its evolution.
Second, navigation has always been a critical component in

every version of the system. Parts of the system described

here were first present in 2002, with the latest dynamic

safety module debuting in 2005. The navigation system’s

design is built on experience gained since 1997 working on

fast navigation for small high-performance robots [3], [4].

III . OBJECTIVE ASSIGNMENT FOR
MULTIROBOT PLANNING

Multirobot domains can be categorized according to many

different factors. One such factor is the underlying par-

allelism of the task to be achieved. In highly parallel
domains, robots can complete parts of the task separately,

and mainly need to coordinate to achieve higher efficiency.

In a more serialized domain, some part of the problem can

only be achieved by one robot at a time, necessitating

tighter coordination to achieve the objective efficiently.

Occasionally, even tighter coordination is needed with

multiple robots executing joint actions in concert, such as

for a passing play between robots, or joint manipulation.
Robotic soccer falls generally between parallel and

serialized domains, with brief periods of joint actions.

Soccer is a serialized domain mainly due to the presence of

a single ball; at any given time, only one robot should be

actively handling the ball, even though all the teammates

need to act. In these domains, multirobot coordination

algorithms need to reason about the robot that actively

addresses the serial task and to assign supporting objec-
tives to the other members of the team. Typically, there is

one active robot with multiple robots in supporting roles.

These supporting roles give rise to the parallel component

of the domain, since each robot can execute different

actions in a possibly loosely coupled way to support the

overall team objective.

A great body of work exists for task assignment and

execution in multiagent systems. Gerkey and Mataric [5]
provide an overview and taxonomy of task assignment

methods for multirobot systems. Uchibe [6] points out the

direct conflicts that can arise between multiple executing

behaviors, as well as complications arising when the num-

ber of tasks does not match the number of robots. A module

selection and assignment method with conflict resolution

based on priorities was presented. D’Angelo et al. [7] pre-

sent a cooperation method that handles tight coordination
in a soccer domain via messaging between behaviors exe-

cuting the cooperating agents. Task assignment for our

early robot soccer system is given in Veloso et al. [3], while

more recent methods are described by Browning et al. [2],

[8]. Beyond assignment of tasks to agents, their still lies

the problem of describing how each agent should imple-

ment its local behavior. Brooks [9] presents a layered

architecture using subsumptive rules, while Tivoli [10]
presents an artificial potential field for local obstacle

avoidance. Arkin [11] presents the method of motor

schema, which extends the idea of potential functions to

include weighted multiple objectives so that more complex

tasks can be carried out. All three of these approaches

calculate behaviors based on local sensor views. Koren and

Borenstein [12] point out the limitations of direct local

execution of potential functions. In Latombe [13], poten-
tials are defined over the entire workspace and used as

guidance to a planner, alleviating most of the problems

with local minima. The MAPS system [14], [15] described

by Tews et al. uses workspace potential functions which

are combined to define behaviors in a robotic soccer do-

main. The potentials are sampled on an evenly spaced grid,

and different primitives are combined with weights to

Fig. 3. The overall system architecture for CMUnited/CMDragons.

(Thanks in particular to Brett Browning and Michael Bowling for

their contributions to the overall team architecture.)
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define more complex evaluations. The potential is used as
input to a grid-based planner and to determine targets for

local obstacle avoidance. The method of strategic posi-

tioning via attraction and repulsion (SPAR) is presented in

Veloso et al. [3], and describes the first method used in

our system. It combines binary constraints with linear

objective functions to define a potential over the work-

space. The system could be solved using linear program-

ming or sampling on a regular grid defined in the
workspace. It was successfully applied in the RoboCup

small-size environment using grid sampling. More re-

cently, Weigel et al. [16] uses a potential approach similar

to SPAR but with purely continuous functions defined on

a grid. Continuous functions guarantee all locations have

a well defined value so that A� [17] search can be directly

applied. Laue et al. [18] describe a workspace potential

field system with a tree-based continuous planner to cal-
culate a path to the location of maximum potential.

Task allocation in our system is described in

Browning et al. [8]. Our system adopts a split of active

and support roles and solves each of those subtasks with a

different method. Active roles which manipulate the ball

generate commands directly, receiving the highest priority

so that supporting roles do not interfere. Supporting roles

are based on optimization of potential functions defined
over the configuration space, as in SPAR and later work.

With these two distinct solutions, part of our system is

optimized for the serialized aspect of ball handling, while

another part is specialized for the loosely coupled sup-

porting roles. We address the need for the even more tight

coupling that is present in passing plays through behavior

dependent signaling between the active and supporting

behaviors as in D’Angelo et al. [7]. In this paper we briefly
present the potential function maximization used by sup-

port roles, and then describe how the resulting naviga-

tional target is achieved.

In our system, the navigation targets of supporting

roles are determined by world-state evaluation functions

defined over the entire soccer field. Each function holds

the world state external to a robot constant, while varying

the location of the robot to determine a real valued eval-
uation of that state within the workspace. Hard constraints

are represented using multiplicative boolean functions,

whereas soft constraints are modeled as general real-

valued functions. An example of the general form of the

pass position evaluation function is given in Fig. 4. Passing

in our system is optimized for a single pass-and-shoot be-

havior, and the parameters are set to value states where

this can execute. First, the angular span of a receiving
robot’s area at a workspace position p, and the angular span

of the open goal area aiming from p are introduced as

linear functions with positive weights. Next the relative

lengths of the passes are combined to encourage a pass and

shot of equal length, maximizing the minimum speed of

the ball at any point due to friction. This is introduced

using a Gaussian function of the difference in lengths of

the pass ðaÞ and shot ðbÞ. Finally, interception for a shot is

easiest at right angles, so a Gaussian function is applied to

the dot product of the pass and shot relative vectors ða � bÞ.
The weights were set experimentally to achieve the desired
behavior. The resulting plots from two example passing

situations are shown in Fig. 5.

While the exact parameters and weights applied in

evaluation functions are highly application dependent, and

thus not of general importance, the approach has proved of

useful throughout many revisions of our system. In

particular, with well-designed functions, the approach

has the useful property that large areas have a nonzero
evaluation. This provides a natural ranking of alternative

positions so that conflicts can be resolved. Thus, multiple

robots may be placed on tasks with conflicting actions, or

even the same task; the calculation for a particular robot

simply needs to discount the areas currently occupied by

other robots. Direct calculation of actions, as is used for

active roles, does not inherently provide ranked alter-

natives, and thus leads to conflicting actions when other
robots apply the same technique.

In order to generate concrete navigation targets for

each robot, we must find maximal values of each robot’s

assigned evaluation function. We would like to do so as

efficiently as possible, so that the complexity of the po-

tential functions is not a limiting factor. We achieve the

necessary efficiency through a combination of hill climb-

ing and randomized sampling. First, a fixed number of
samples is evaluated randomly over the domain of the

evaluation function, and the sampled point with the best

evaluation is recorded. We call this point the sampled-best.
Two other interesting points are the point of maximum

evaluation recorded from the last control cycle, called

previous-best, and the current location of the robot current-
loc. For each of these three points, we apply hill climbing

to the point with a limited number of steps to find a local

Fig. 4. An example demonstrating the passing evaluation function

inputs. The input values for evaluating a point p are the circular

radius and subtended angle of the arcs a and b, and the angle between

the center line segments of the two arcs. These are combined using

simple weighted functions to achieve the desired behavior.
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maximum. The best of the three is taken as the maximum,

and is used as the robot’s navigation target. It is also

recorded for use in the next control cycle as previous-best.
Using this approach, few random samples need to be eval-

uated each frame, lending itself to real-time performance.

However, because previous maximal values are recorded,

the calculations of several control cycles are leveraged to

quickly find the global maximum for a sufficiently smooth
and slowly changing function. The current-loc point is

added to provide more consistent output in situations

where the maximum of the function changes rapidly. This

is normally due to rapid changes in the environment itself.

IV. PATH PLANNING

Path planning is one of the most studied problems in
mobile robotics. Latombe [13] gives a thorough overview of

early approaches, while Reif [19] establishes the exponen-

tial complexity of the general path planning problem. This

complexity has inspired many approximation methods,

such as local minima free grid-based potentials [20], and

common application of the A� algorithm [17] on cost grid

representations of the robot’s state space. Stentz’s D�

algorithm [21] builds on A� to create a variant which only
recalculates portions of the problem where costs change,

achieving significant speedup for domains where the

environment changes slowly over time. Much recent work

has centered on the idea of randomized sampling for ap-

proximation, such as LaValle and Kuffner’s RRT algorithm

[22], [23], and planners based on Kavraki et al.’s Proba-

bilistic Roadmap (PRM) framework [24], [25]. RRT grows

random trees in configuration space to solve single-query
problems efficiently, and was extended by Bruce [26] to

work efficiently in unpredictably changing domains by

using continuous replanning with a bias from past plans.

PRM separates planning into a learning and query phase.

In the learning phase, a random subgraph of the config-

uration space is build by sampling points and connections

between points to find free locations and paths, respec-

tively. In the query phase, this graph can be used with

ordinary graph search methods such as A� to solve the path

planning problem. It relies on largely static domains to

achieve efficiency, since, in an unchanging workspace, the
learning phase need only be computed once. Boor et al. [27]

changed the sampling method of PRM to focus on the

boundaries of free space in their Gaussian PRM approach.

Amato and Wu [28], [29] create another modified sam-

pling approach called Obstacle PRM, and Hsu [30] created

a bridge test to bias sampling to difficult narrow passages.

Isto [31] looked at applying complex local planners to

PRM, replacing the commonly used Bstraight-line[ meth-
od for local planning to connect two points. It was found to

significantly improve graph connectivity for difficult

problems, resulting in more reliable planning.

Our particular domain contains multiple moving ob-

jects, which must be treated as obstacles for safe navi-

gation. Erdmann and Lozano-Perez [32] look at the effects

of multiple moving objects on the planning problem and

offer some early solutions by adding time to the config-
uration space. Latombe [13] provides background and in-

vestigates the effects of moving obstacles on the planning

problem. Fiorini and Shiller [33] focus on using relative

velocity to simplify the planning problem from each

agent’s point of view, leading to a more tractable problem

for mobile robots. Their work was extended to construct

explicit velocity obstacles, first for linear paths and then

for arbitrary nonlinear paths [34], [35]. The approach
assumes that the complete obstacle paths are known in

advance. More recently, Hsu [36] applied randomized

planning to domains with moving obstacles, and tested the

Fig. 5. Two example situations passing situations are shown with, the passing evaluation metric sampled on a regular grid. The values are

shown in grayscale where black is zero and the maximum value is white. Values below 0.5% of the maximum are not drawn. The same

evaluation function is used in both the short and long pass situations, and the maximum value is indicated by the bold line extending

from the supporting robot.
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system on physical robots. This approach assumes constant
velocity obstacles, but recovers via replanning when a

change in velocity is detected.

In the RoboCup small-size domain, the environment is

truly dynamic, with up to ten agents moving at a given

time. In addition, it is unpredictable; opponent robots may

move arbitrarily, and the motion of the ball cannot be

predicted well enough that we can even foresee our own

team’s commands. The result is that we cannot apply a
system which assumes a known future trajectory for mov-

ing obstacles, but instead one that allows new decisions to

be made each control cycle. The resulting approach may be

less optimal from an efficiency point of view, but we would

like to provide for collision-free navigation to the greatest

extent possible. Since half of the moving obstacles are

agents controlled by our own centralized system, we can

take advantage of this to achieve safety for among our own
robotic agents. Opponent robots can be incorporated into

the calculation as well, but without any safety guarantees,

since safe motion may not even be possible in the general

case of agents that can move as fast as those that we con-

trol. For the remainder of this section, we will describe our

approach to the path planning problem as part of the larger

navigation system.

For path planning in our system, we model the en-
vironment in two dimensions (2-D), ignoring any dyna-

mics constraints of the robot. These constraints are instead

handled by a later module, allowing the planner to focus

on generating a path valid for only static obstacles. The

algorithm used in our system is the ERRT extension of the

RRT-GoalBias planner [22], [23]. Due to the speed of the

algorithm, a new plan can be constructed each control

cycle, allowing the plan to track changes in the dynamic
environment without the need for replanning heuristics. A

more thorough description of our previous work on ERRT

can be found in [26]. Since that work, only a new more

efficient implementation has been completed, but the

underlying algorithm is the same. It is described here in

enough detail to be understood for the evaluations later in

the paper.

Rapidly exploring random trees (RRTs) [22] employ
randomization to explore large state spaces efficiently,

and form the basis for a family of probabilistically com-

plete, though nonoptimal, kinodynamic path planners

[23]. Their strength lies in that they can efficiently find

plans in relatively open or high dimensional spaces be-

cause they avoid the state explosion that discretization

faces. A basic planning algorithm using RRTs is shown in

Fig. 6, and the steps are as follows. Start with a trivial tree
consisting only of the initial configuration. Then iterate:

pick a random location q in the configuration space, then

find the nearest point in the current tree using some

distance metric, and extend that point toward q. Ex-

tending is defined as adding a new point to the tree that

extends from a point in the existing tree toward some

point q, while maintaining whatever motion constraints

exist. The algorithm leaves the choice of the distribution
of q as a free parameter, and this is the key to efficient

search. A basic RRT tree picks q uniformly throughout the

environment. This will build a tree which tends toward

uniform convergence of the environment [23], but does

not focus its search on any particular point. For path

planning, we want to focus on a specific goal point g, so

RRT-GoalBias modifies the basic RRT algorithm’s distri-

bution of q by making it bimodal: with probability p,
choose the goal location g, while with probability 1 � p,

pick a point x uniformly from the configuration space.

Using a typical value of p between 0.05 and 0.1, the

algorithm combines random exploration with biased

search toward the goal, and the tree quickly reaches the

goal for typical environments [22].

To convert the RRT algorithm into a planner, we need

two simple additions. One is to restrict the tree to free
space, where it will not collide with any obstacles. This can

be accomplished easily by only adding nodes for extensions

that will not hit obstacles. To make the tree into a planner,

we only need to stop once the tree has reached a point

sufficiently close to the goal location. Because the root of

the tree is the initial position of the robot, tracing up from

any leaf gives a valid path through free space between that

Fig. 6. Example growth of an RRT tree for several steps. Each iteration, a random target is chosen and the closest node in the tree is Bextended[

toward the target, adding another node to the tree.
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leaf and the initial position. Thus, a leaf near the goal can

be used as a path which solves the planning problem.

Execution Extended RRT (ERRT) adds the notion of a

waypoint cache, which is a fixed-size lossy store of nodes

from successful plans in previous iterations of the planner.
Whenever a plan is found, all nodes along the path are added

to the cache with random replacement of previous entries.

Then during planning, random targets are now chosen from

three sources instead of two. In other words, with proba-

bility p it picks the goal, with probability q it picks a random

state from the waypoint cache, and with the remaining

1 � p � q it picks a random state in the environment.

In order to implement ERRT, we need an extend
operator, a distance function between robot states, a dis-

tribution for generating random states in the environment,

and a way of determining the closest point in a tree to a

given target state. Our implementation uses Euclidean

distance for the distance function and the uniform dis-

tribution for generating random states. The nearest state in

the tree is determined using KD-Trees, a common tech-

nique for speeding up nearest neighbor queries. Finally,

the extend operator simply steps a fixed distance along the
path from the current state to the target. For a planner

ignoring dynamics, this is the simplest way to guarantee

the new state returned is closer to the intermediate target

than the parent. Our step size is set to the minimum of the

robot’s radius and the distance to the randomly chosen

target. An image of the planner running in simulation is

shown in Fig. 7, and a photograph of a real robot controlled

by the planner is shown in Fig. 8. To simplify input to the
motion control, the resulting plan is reduced to a single

target point, which is the furthest node along the path that

can be reached with a straight line that does not hit

obstacles. This simple postprocess smooths out local non-

optimalities in the generated plan.

V. MOTION CONTROL

Once the planner determines a waypoint for the robot to

drive to in order to move toward the goal, this target state

is fed to the motion control layer. The motion control

system is responsible for commanding the robot to reach

the target waypoint from its current state, while subject to

the physical constraints of the robot. The model we will

take for our robot is a three- or four-wheeled omnidirec-

tional robot, with bounded acceleration and a maximum
velocity. The acceleration is bounded by a constant on two

independent axes, which models a four-wheeled omnidi-

rectional robot well. In addition, deceleration is a separate

constant from acceleration, since braking can often be

done more quickly than increasing speed. The approach

taken for motion control is the well known trapezoidal

velocity profile. In other words, to move along a di-

mension, the velocity is increased at maximum accelera-
tion until the robot reaches its maximum speed, and then it

decelerates at the maximum allowed value to stop at the

final destination. An example velocity profile is shown in

Fig. 9. The area traced out by the trapezoid is the dis-

placement effected by the robot. For motion in 2-D, the

problem is decomposed as a one-dimensional (1-D) motion

problem along the axis from the robots’ current position to

the desired target, and another 1-D deceleration perpen-
dicular to that axis.

While the technique is well known, the implementation

focuses on robustness even in the presence of numerical

Fig. 7. A robot on the left finds a path to a goal on the right using ERRT.

The current location is shown as a filled circle, while the goal

location is shown as an outlined circle.

Fig. 8. A robot (lower left) navigating at high speed through a field

of static obstacles.

Fig. 9. Our motion control approach uses trapezoidal velocity profiles.

For the 2-D case, the problem can decomposed into two 1-D problems,

one along the difference between the current state and the target

state, and the other along its perpendicular.
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inaccuracies, changing velocity, or acceleration constraints,
and the inability to send more than one velocity command

per cycle. First, for stability in the 2-D case, if the initial and

target points are close, the coordinate frame becomes

degenerate. In that case the last coordinate frame above the

distance threshold is used. For the 1-D case, the entire

velocity profile is constructed before calculating the

command, so the behavior over the entire command period

(1/60 to 1/30 of a second) can be represented. The cal-
culation proceeds in the following stages.

• If the current velocity has a different sign than the

difference in positions, decelerate to a complete

stop.

• Alternatively, if the current velocity will overshoot

the target, decelerate to a complete stop.

• If the current velocity exceeds the maximum,

decelerate to the maximum.
• Calculate a triangular velocity profile that will

close the gap.

• If the peak of the triangular profile exceeds the

maximum speed, calculate a trapezoidal velocity

profile.

Although these rules construct a velocity profile that

will reach the target point if nothing impedes the robot,

limited bandwidth to the robot servo loop necessitates
turning the full profile into a single command for each

cycle. The most stable version of generating a command

was to simply select the velocity in the profile after one

command period has elapsed. Using this method prevents

overshooting, but does mean that very small short motions

will not actually occur (when the entire profile is shorter

than a command period). In these cases it may be desirable

to switch to a position-based servo loop rather than a
velocity-based servo loop if accurate tracking is desired.

VI. DYNAMICS SAFETY SEARCH

In the two previous stages in the overall system, the

planner ignored dynamics while the motion control

ignored obstacles, which has no safety guarantees in

preventing collisions between the agent and the world, or
between agents. The BDynamic Window[ approach [37] is

a search method which elegantly solves the first problem of

collisions between the robotic agent and the environment.

It is a local method, in that only the next velocity command

is determined; however, it can incorporate nonholonomic

constraints, limited accelerations, maximum velocity, and

the presence of obstacles into that determination, thus

guaranteeing safe motion for a robot. The search space is
the velocities of the robot’s actuated degrees of freedom.

The two developed cases are for synchro-drive robots with

a linear velocity and an angular velocity, and for holonomic

robots with two linear velocities [37], [38]. In both cases, a

grid is created for the velocity space, reflecting an eval-

uation of velocities falling in each cell. First, the obstacles

of the environment are considered, by assuming the robot

travels at a cell’s velocity for one control cycle and then
attempts to brake at maximum deceleration while fol-

lowing that same trajectory. If the robot cannot come to a

stop before hitting an obstacle along that trajectory, the

cell is given an evaluation of zero. Next, due to limited

accelerations, velocities are limited to a small window that

can be reached within the acceleration limits over the next

control cycle (for a holonomic robot this is a rectangle

around the current velocities). An example is shown in
Fig. 10. Finally, the remaining valid velocities are scored

using a heuristic distance to the goal. It was used suc-

cessfully in robots moving up to 1 m/s in cluttered office

environments with dynamically placed obstacles [38].

Our approach extends the Dynamic Window approach

to multiple velocity and acceleration bounded robots, and

replaces the grid-based sampling with a randomized

sampling approach which guarantees the preservation of
safety if no sensor or action noise is present. The system

model employed is n robots moving according to New-

tonian physics with piecewise constant accelerations. Let a

motion segment be defined as a time interval during which a

robot is undergoing constant acceleration. Thus, the mo-

tion of each robot is defined by several motion segments. A

segment for robot i starts at time t0, where the robot is at

position q0i with velocity v0i. The robot will execute a
control acceleration ui until time t1i. At all times during the

motion the robot is bounded by a circle (or a sphere in

higher dimensions) of radius ri. The equation of motion is

the following:

qiðtÞ ¼ q0i þ v0iðt � t0Þ þ
1

2
uiðt � t0Þ2: (1)

For the safety search, two major checking primitives

must be available. The first is to check a segment against

static obstacles in the environment. This can be achieved

with standard collision detection approaches using a
piecewise linear approximation of the trajectory, with a

margin added around the robot so that the actual trajectory

lies within the linear approximation at all points. The types

of trajectories generated for our approach typically have

Fig. 10. Example environment shown in world space and velocity

space.
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little curvature, so a linear approximation is well suited.
The second primitive is to check if a segment from one

robot is safe against another robot’s segment. One need

only consider the parts of the trajectories during the

intersecting portion of the segments’ time intervals. The

segment check can be derived from the closest point of

approach under constant acceleration, which is the point

in time where the distance between two bodies traveling

according to (1) is minimal. Its calculation will be de-
scribed later in this section. In both Dynamic Window

and our safety search method, each robot i can be said to

have three segments. The first is an acceleration action for

the next control cycle over the time interval ½t0; tc	. The

acceleration for this period comes directly from the

trapezoidal motion control, and will either be maximum

acceleration, no acceleration, or maximum deceleration

depending on the state of the robot and the time during
the trajectory. From the resulting position of that

immediate action, the next segment is to come to a

complete stop at maximum deceleration. This is over the

time interval ½tc; tsi	. Note that although all robots share a

common value for tc, tsi is dependent on the velocity of a

robot and thus can be different for each one. The final

segment is simply to remain stopped permanently,

resulting in a time interval of ½tsi;1	. An example
velocity profile for two robots is shown in Fig. 11. Note

that although the profiles always come to a stop

immediately after executing a command, this is merely

to guarantee safety. In the next control cycle, each robot

will try to replace the emergency stop predicted from the

last frame with an action closer to the desired velocity. By

always providing for the ability of an agent to stop, we

guarantee safety, although ideally this will not be
necessary. If no agents interact, then we will always exe-

cute the command from motion control. When they do

interact, we will attempt a search to find an alternative

action to stopping that more closely matches the desired
acceleration command while still guaranteeing safety.

One feature of our method is that safe commands are

determined purely in terms of accelerations, rather than

velocity targets as in the Dynamic Window approach. This

leads to a more straightforward implementation for holo-

nomic robots powered by electric motors, since they have

nearly direct control on their forces and thus their

accelerations. For robots where velocity control is more
appropriate, the short control interval of tc makes it rel-

atively easy to integrate the acceleration to create a ve-

locity space search as in Dynamic Window. For simplicity

we will only describe the acceleration-based approach.

If each robot i 2 ½1; n	 starts at t0 with position q0i and

velocity vi, and each robot has a maximum deceleration of

ad, we would like to determine a safe control acceleration

ui that most closely approximates a target acceleration ati

given by motion control. In our approach we minimize the

squared Euclidean distance kui � atik2 subject to ui

maintaining safety. Other metrics may be more appropri-

ate for different robot models, and the metric need only to

be able to compare two accelerations, allowing almost any

metric to be applied easily to this system.

Using the two segment–obstacle and segment–segment

collision checking primitives from the path planner,
along with the three motion segments each robot under-

goes, we can construct functions for use by a high-level

search procedure. The first function we will call

CheckObsði; uiÞ : bool, which returns true if and only if

the three motion segments of robot i will not hit a world

obstacle, given an acceleration of ui during the first

motion segment (the control segment where t 2 ½t0; tc	).

Note that for an implementation, we need only check the
first two motion segments, since the position during the

third (stationary) segment is equal to the final position of

the second segment. The second function we call

CheckRobotði; ui; j; ujÞ : bool, which checks that robot i
and j do not collide during any of their respective motion

segments, given accelerations of ui and uj, respectively,

during the first controlled motion segment. This requires

checking the closest point between the robots over the first
segment ½t0; tc	, followed by segments ½tc;minðtsi; tsjÞ	, and

finally ½minðtsi; tsjÞ;maxðtsi; tsjÞ	. Referring to Fig. 11, each

point at which the acceleration changes for either of the

robots defines a new segment. Thus, during each segment,

the two robots are bodies undergoing constant accelera-

tion. By using the starting relative position, relative

velocity, and relative acceleration for each segment, we

can define a quadratic relative position function as shown
in (2). The minimum of the function can be solved alge-

braically or numerically, and the derivation is straightfor-

ward. A solution to similar formulation is given by Fiorini

et al. [33]. If the distance between the closest points of any

segment are less than the summed radius of the two robot’s

bounding circles, ri þ rj, CheckRobot must return false,

indicating that the robots could collide. Otherwise, the two

Fig. 11. Example velocity profile of two agents i and j. Each agent starts

at a distinct velocity (v0i and v0j), and will execute an acceleration

command from the current time t ¼ 0 until control cycle time tc . Then

each robot assumes that it will come to an emergency stop at maximum

deceleration. This results in three segments of constant acceleration in

the relative motion, denoted by the dotted lines.
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bounding volumes are disjoint at all times during the

trajectories, and CheckRobot should return true. With

these two functions available, we can write the high-level

search routines CheckAccel and FindSafeAccel, listed in

Table 1

�qijðtÞ ¼ qiðtÞ � qjðtÞ
�qijðtÞ ¼ ðq0i � q0iÞ þ ðv0i � q0iÞðt � t0Þ

þ 1

2
ðui � ujÞðt � t0Þ2: (2)

CheckAccel checks if an acceleration would hit a static

obstacle or the trajectory of another robot. FindSafeAccel

first initializes all robot commands to stopping, then it for

each robot it tries to improve the command. An im-

provement is any safe acceleration that more closely

matches the desired acceleration returned by the motion
control (ati for robot i). The distance from the desired

acceleration is stored in the variable di. If a robot is not

near any obstacles or other robots, then it can execute any

control acceleration safely. This optimistic case comes

next, checking if the ati is safe. If it is, we can move on to

the next robot. If not, we use random sampling of the of

the robots’ feasible accelerations. Samples are returned by

a function RandomAccel, and each is checked to see if it
more closely matches the target acceleration. If no better

acceleration was found, the robot will execute the

previously assigned default command of a maximum

deceleration to a stop.

Overall safety is guaranteed by forward chaining of the
safety guarantee across control cycles; the stopping action

is put off into the future whenever possible, but always

maintained as a possible action to execute (starting in the

next cycle) whenever decisions are made for the current

cycle. Specifically, CheckAccel returns true if and only if a

given robot i can execute an acceleration command a while

still maintaining a safe future stopping action. Thus, any

action passing CheckAccel will allow the agent to stop
safely beginning in the next control cycle. FindSafeAccel

starts by initializing each command to a stopping action,

which should be guaranteed safe from the previous control

cycle. For this to hold, the initial conditions of the system

must be safe, but this is easily satisfied by starting the

system with all agents stopped. After initializing the robot

acceleration commands, FindSafeAccel then tries to im-

prove each robot’s command in turn, first checking the
desired command for that robot, and then sampling ran-

domly for one which passes CheckAccel. If any such

velocity is found, it must be safe due to the properties of

CheckAccel, and if no action is found, then the default

action of stopping remains, which was guaranteed safe

from the previous cycle. In this way, safety can be main-

tained continuously, provided that all moving agents are

under control of the centralized algorithm.
The safety system as a whole guarantees that robots

starting from a safe configuration will always choose

accelerations and thus velocities that maintain this safety

condition. The approach always provides for a safe stop-

ping action in future control cycles, but engages in search

each cycle to find a command which better matches the

desired velocity to achieve the overall navigation objective

safely. Safety is defined as the ability to stop without hit-
ting a static or moving obstacle, provided all moving

obstacles are a robot participating in the algorithm. Other

moving circular obstacles (such as opponent robots) can be

incorporated into the algorithm’s calculations, although no

guarantees can be provided for safety in this more general

case. Empirically observed behavior in this situation has,

however, been favorable (our most recent team, CMRobo-

Dragons, did not receive a single pushing or hitting penalty
throughout the RoboCup 2005 competition).

VII. EVALUATION AND RESULTS

For evaluation, we have focused on safe navigation, as

meaningful quantitative results are difficult to obtain for

objective assignment and evaluation. For objective evalu-

ation in our implemented system, we were able evaluate
100 random points each cycle using the described passing

evaluation function, resulting in an execution time of only

0.29 ms per supporting robot. By maintaining the best

values across control cycles, we could effectively search

6000 samples per second and quickly find a near optimal

solution to the objective function. In the RoboCup 2005

competition, passing was critical to the success of our team,

Table 1 High-Level Search Routines for Velocity-Space Safety Search
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accounting for over 75% of the 23 goals scored, leading to

our fourth-place finish after five wins and two losses.

For navigation, we created an evaluation domain which

is a simulation of the RoboCup small-size environment,
but with additional large obstacles added in order to

increase the likelihood of robot interactions. The environ-

ment is shown in Fig. 12. For the tests, four robots were

given the task of traveling from the leftmost open area to

the rightmost open area, and back again for four iterations.

Each robot has separate goal point separated from the

others by slightly more than a robot diameter. The 90-mm-

radius robots represent the highest performance robots
we have used in RoboCup. Each has a command cycle of

1/60 s, a maximum velocity of 2 m/s, acceleration of

3 m/s2, and deceleration of 6 m/s2. Because different

robots have different path lengths to travel, after a few

traversals robots start interacting while trying to move in

opposed directions. Fig. 13 shows an example situation in

the middle of a test run. On average, four full traversals by

all of the robots took about 30 s of simulated time.
For the evaluation metric, we chose interpenetration

depth multiplied by the time spent in those invalid states.

To more closely model a real system, varying amounts of

position sensor error were added, so that the robot’s

reported position was a Gaussian deviate of its actual

position. This additive random noise represents vision

error from overhead tracking systems. Velocity sensing

and action error were not modeled here for simplicity;
these errors depend heavily on the specifics of the robot

and lack a widely applicable model. First, we compared

using the planner and motion control but enabling or dis-

abling the safety search. Each data point is the average of

40 runs (four robots, each with ten runs), representing

about 20 min of simulated run time. Fig. 14 shows the

results, where it is clearly evident that the safety search

significantly decreases the total interpenetration time.

Without the safety search, increasing the vision error
makes little difference in the length and depth of collisions.

Ideally the plotted curve without safety search would be

smooth, but due to the random nature of the collisions it

displays extremely high variance, and many more runs

would be needed to demonstrate a dependence on vision

noise. However, even with the noise, it is clear that the

curve is significantly worse than when safety search is used.

Next, we evaluated the safety search using different
margins of 1–4 mm around the 90-mm robots, plotted

against increasing vision error (see Fig. 15). As one would

expect, with little or no vision error even small margins

suffice for no collisions, but as the error increases there is a

benefit to higher margins for the safety search, reflecting

the uncertainty in the actual position of the robot.

Fig. 12. The evaluation environment consists of four robots which

must alternately achieve goals on the left and right side of the

environment. The state pictured here is just at the beginning of a run,

with the robots represented as filled circles and their respective goals

represented as outlined circles. The plans calculated from the path

planner are shown, but the search trees are omitted for clarity.

Fig. 13. Multiple robots navigating traversals in parallel. The outlined

circles and lines extending from the robots represent the chosen

command followed by a maximum rate stop.

Fig. 14. Comparison of navigation with and without safety search.

Safety search significantly decreases the metric of interpenetration

depth multiplied by time of interpenetration.
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The other variable of interest is the cost in running

time of planning and the safety search. In the tests above,

the planner was limited to 1000 nodes, and the safety

search was limited to 500 randomly sampled velocities.

The system executed with an average run time of 0.70 ms

per control cycle without the velocity safety search, and

0.76 ms with it. Thus, safety search does not add a notice-

able overhead to the navigation. Since this is a real-time
system, however, we are most interested in times near the

worst case. Looking at the entire distribution of running

times, the 95th percentiles are 1.96 ms without safety

search and 2.04 ms with it. In other words, for 95% of the

control cycles, runtime was less than 2.04 ms with safety

search, and the execution time was only 4% longer than

without safety search. Next, to measure the scalability of

the safety search approach, the same traversal task was
repeated while varying the number of robots from one to

ten. With increasing numbers of agents in a fixed-size

environment, we can hope to gauge how well the algo-

rithm performs under increasing amounts of clutter due to

moving objects. The timing results for safety search are

shown in Fig. 16. The function appears to scale in a

roughly linear fashion for more than one agent, though it

is too noisy to determine with any certainty. The most
important observation is that it does not scale in a super-

linear fashion, which would cause difficulties for moder-

ately large teams.

When applied in a more realistic RoboCup environ-

ment, the lack of cluttering obstacles makes the additional

execution time of safety search contribute less than 1% to

overall navigation time. This is because the already

efficient safety search is only needed in the rare cases
when two agents are likely to collide. On the physical

robots, we have qualitatively noted that the frequency of

collisions between teammates goes from several times a

minute to once every several minutes, even for tasks with

highly conflicting navigation goals. The remaining colli-

sions appear to be a result of our imperfect model of the

robots while operating at high speed, and the resulting

errors in tracking. In the future, we hope to explore more
objective measurements of collisions for the real agents. In

both the simulated and real RoboCup domain, the safety

search system has been shown to significantly decrease

cases where robots collide, while preserving the real-time

performance of a navigation system which uses the ERRT

planner alone.

VIII . CONCLUSION

This paper described a navigation system for the real-time

control of multiple high performance robots in a dynamic,
unpredictable domain. It also gave a brief overview of how

the navigation system was employed in the overall system.

Specifically, navigation targets for multiple supporting

roles were determined by using a numerical sampling

technique to find maximums in real-valued evaluation

functions. This approach can operate easily with tight real-

time constraints and scales easily to moderate size teams.

The navigation module addresses the issue of carrying out
such targets, allowing multiple robots to operate safely

without collisions, even though agents are free to change

their desired velocity commands each control cycle. The

current solution is centralized, relying on perfect commu-

nication of world state and actions. However, the system

purposely does not rely on any additional communication;

in particular, no form of deliberative communication of

intents is used. Compared to a purely monolithic design
which plans in parallel for all agents in a joint state and

action space, the approach in this paper minimizes com-

municated state to a known bounded size. It is expected

Fig. 15. Comparison of several margins under increasing vision error.

The four different margins used are listed in the key, while increasing

vision standard deviation is plotted against the collision metric of

interpenetration depth multiplied by time of interpenetration.

Fig. 16. Average execution time of safety search for each agent,

as the total number of agents increases. For each robot count,

100 trials of the left-right traversal task were run. Both the

raw data and means are shown.
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that this would make decentralization easier to achieve
compared to a system without bounded communication. In

its current form, however, the system does make demands

of sensor accuracy that may not yet be practical for

multiple distributed robots which use only local sensing.

We feel the primary contribution is to serve as a successful

model and example for similar problem domains, and as a

starting point for future extensions which relax some of

the assumptions. h
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