
RoboIME: on the road to RoboCup 2017

Carla S. Cosenza, Gustavo C. K. Couto, Luciano de S. Barreira, Luis D. P.
Farias, Luis R. L. Rodrigues, Jan L. L. Segre, Matheus C. Castro, Nicolas S.
M. M. de Oliveira, Onias C. B. Silveira, Renan P. de Souza, Victor Bramigk,

Yugo Nihari and Paulo F. F. Rosa

Instituto Militar de Engenharia, Rio de Janeiro, Brasil

rpaulo@ime.eb.br
http://roboime.com.br

Abstract. This paper describes the electronic, mechanical and software
designs developed by the RoboIME Team in order to join the RoboCup
2017. The overall concepts are in agreement with the rules of Small
Size League 2017. This is the fourth time RoboIME participates in the
RoboCup.

1 Introduction

RoboIME is a Small-Size team from the Instituto Militar de Engenharia, IME,
located in Rio de Janeiro, Brazil. This is the ninth time the team takes part in
competitions, being the best results two second places in RoboCup Brazil Open
2011 and in Latin American Robotic’s Competition 2012.

All students that work in the SSL project are members of IME’s Laboratory
of Robotics and Computational Intelligence. Team’s previous works were used
as reference [5] [4], as well as the help from former members of the team as
consultants and tutors.

This article describes the team’s general information and improvement in
the most two recent years, in all topics: computational, electrical and mechani-
cal. They are organized as such: software in section 2, electric in section 3 and
mechanical in section 4. Conclusions and future works are discussed in section 5.

2 Software Project

Our current Software is developed in LabView 2016 because of its scalability
potential and the tools it provides for measurement of physical entities and for
graphical analysis of our system.

The Software’s information flow - as depicted in figure 1 - is composed of five
stages: Reception, Pre-processing, Decision Making (Artificial Intelligence Mod-
ule), Control and Transmission. In Reception, packages from the SSL-Vision and
the Ref box are received. The packages are further independently pre-processed
in two modules: Gamestate and Referee. In Gamestate the Vision information

http://roboime.com.br


2

is filtered using a Kalman Filter. The Control stage, in which is received com-
mands from the AI system, perform algorithms in order to control the robots’
movement by calculating proper velocities. Further, in the Transmission stage,
the Transmission module sends the proper velocities to each robot so they can
perform the desired movement. The decision-making stage, which is composed
by Strategy (Personalities Module) and Tactic is further described.

Fig. 1. Computational project flowchart

2.1 Game state

Estimation using Kalman Filter One improvement of the 2016 version was
the addition of a Kalman Filter, which uses available data to estimate more
precise values and obtain information that was not available before (A good
starter reference for kalman filters is found at [3]). A kinetic model is applied in
the objects, which improves our instantaneous values of position, velocity and
acceleration and helps predict future situations, even without the SSL-Vision’s
aid. Further work can be included in this filter, such as receiving velocities from
the robots themselves.

2.2 AI System

Personalities Our current AI system architecture starts by receiving the pre-
viously pre-processed information from the Vision system and thus performs a
heuristic algorithm to assign a personality for each ally robot in the field. There
are three main personalities - Attacker, Defender, and Goalkeeper -, and each
of them performs a different role accordingly to the current Referee State. The
main behaviour of each personality is defined in our Tactic module, described as
follows:



3

Tactic Module

– Attacker: As for defining the attacker role’s main behaviour, a simple heuris-
tic algorithm is performed:

With the information provided by the visual system , it is possible to estimate
the gaps in the enemy goal, thus to determine a set of intervals in the goal to
which the Attacker shall kick the ball in order to score. The larger intervals
middle point is set to be the target point. In order to avoid tilting, each
target point has a lifespan.

After being calculated the target point, it is applied the GoTo method to set
the Attackers velocities in order to position the robot properly to shoot at
the target point, whether the robot already has the ball possession or not.
If the distance of the Attacker to the ball is close enough and the Attacker
is as well positioned as desired, the Attacker robot is set to kick the ball.

– Defender: The main strategy of the defense is to create a wall of robots. In
order to accomplish that, the first robot assigned to the defense will occupy
the intersection of the line, which connects the center of the goal and the
ball, with the circle whose center is the middle of the goal and has a radius
of r+ l+d, where r is the radius of the robot, l is the distance from the goal
to the beginning of the goal semicircle and d is the radius of that semicircle.
Other robots assigned to the defense will alternatively occupy each side of
the blockade along the circle previously stated with a distance of 2r from
the closest robot. This will prevent the ball from reaching the goal because
the wall of robots will always be in synchronization with the ball.

– Goalkeeper: The main role of the Goalkeeper is to intercept the ball before it
reaches the goal. Therefore, when the enemy has ball control, the goalkeeper
stays where the enemy robot, which has the ball, is looking at. If this position
is outside the goal, it stays as close as possible to the goal end. If the enemy
is not controlling the ball, yet the ball is moving towards our side (e.g. after
a kick), the point where the ball would hit our goal is calculated and the
goalkeeper is assigned there. If this point is outside the goal, it stays at as
close as possible to the goal end.

2.3 Control

Obstacle Avoidance In order to avoid collision with other robots, the Potential
Field algorithm is used. (Further reading can be found at [7]) For every ally
robot, it is computed the other robots’ influence described by the potential
field model. Furthermore, the ally robot’s velocities are hence updated. Even
though this algorithm doesn’t guarantee the robot won’t be trapped, it is simple
to implement and it has been shown to be an efficient approach for obstacle
avoidance in highly dynamic environments.



4

3 Electric Project

3.1 Firmware

For LARC 2016, the team developed a new firmware in C++ applying concepts
of hardware abstraction and object orientation. Thus, there are abstract classes,
representing the robot’s sensors, actuators and it’s microcontroller resources, and
concrete classes, which implement the methods defined in the abstract classes.
This way, the firmware becomes closer to a development platform that can be
studied, improved and can support changes as well as serving as a foundation to
new projects.

The firmware is embedded in a STM32F4 Discovery board with an ARM
cortex-M4 microcontroller [9]. The C++ language was chosen due to it’s object
oriented nature, as well as other benefits to the project, such as inheritance and
polymorphism.

The main functions of the firmware are receiving and sending information to
our computer and the control over the robot. The communication occurs inside
an infinite loop, while the control is performed through interrupts.

Abstract classes The functionality of classes is declared by abstract classes
and implemented by specific codes for each hardware. For example: abstract
class motor, implemented by the classes motor brushless and motor ponteH

The firmware has the following classes that implement funcionalities:[2]:
GPIO (sets usable IO pins), SPI, ADC (analog to digital converter), PWM,
InterruptTimer (implements an interruption through a timer), Encoder, Motor,
Robo (implements an interface to all robot’s sensors and actuators), NRF24L01P
(transmits information between computer and robot).

Communication The firmware has classes dedicated to implementing commu-
nication via serial and uses a library called nanopb for serialization.

– USB DEVICE CLASS CDC VCP implements a virtual COM port (VCP),
with one circular buffer for transmission and one for reception. The VCP is
used to send commands to the robot and get information about the wheel
speeds in a test mode, through a command line interface(CLI).

– USB STM32 represents the Discovery’s USB peripheral. The microcontroller
has an OTG FS controller, which is fully compliant with the On-The-Go
Supplement to the USB 2.0 Specification. The USB device is used in order
to emulate a virtual COM port.

– PROTOBUF The nanopb library [2] is used to encode the information trans-
mitted via radio or serial port.

Nanopb is an ANSI-C library for encoding and decoding messages in Google’s
Protocol Buffers[6] format with minimal requirements for RAM and code
space. It is primarily suitable for 32-bit microcontrollers [1].



5

Communication in LabVIEW In the project’s main file, clusters are con-
tinuously read. Those clusters represent our team, the opponent team, positions
where the ball was detected, field’s geometry, information from the referee and
the received Time Stamp. A vector with information about our team is extracted
from a cluster, is converted to a vector of grSim Robot Commands and is sent
to transmission, via UDP (transmits to grSim) or via serial (encoding it using
protobuf and then writing the COM port implemented in a Discovery board
dedicated to transmit to robots).

3.2 Control

Maintaining the robot at the expected speed or position is very important so
that the software project works properly. To try to keep the robots moving as
expected, there are several routines to check or filter the results obtained from
the vision system and the robots themselves.

Dealing with wheel slippage The robot may have one or more slipping
wheels, which is problematic because it makes the robot to deviate from it’s
intended path.

To correct this, first we need to know the relations between the speed of
the wheels, vector v, and the speed of the robot itself, vector v, and the forces
applied to the motors, vector f, and the robot’s acceleration, vector a. Calling
D the matrix that relates m and v, m = Dv, and Cα the matrix that relates f
and a, a = Cαf . To determine if slippage occurs, we calculate D’s pseudo-inverse
matrix, B, and then compute (I−D ·B) ·m. If it results zero, there is no slippage
and the speeds are considered correct. If not, we use Cα’s kernel to remove the
component of forces that are generating the same acceleration. Slippage occurs
when are any wheel speeds in the direction of Cα’s kernel. Applying Gram-
Schmidt in vector m we remove any component in direction of the kernel, but
in consequence we change the overall direction of the robot. To align with the
original correct direction, we just need to take the projection of the corrected
speed vector in the original direction.[8]

Determining new PID constants Effort is being put into finding more ap-
propriate control constants. The Ziegler-Nichols method and a further study of
our robot’s physical model are being used together to help optimize our PID
constants.

To apply Ziegler-Nichols’ method to our wheels, LabView is being used to
plot the velocities registered by our motor’s encoders and sent to the computer
through a serial port. For the robot as a whole, there are three more PID sets
of constants to be found: regarding forward movement, sideways moves and
rotations in it’s own axis. The difference between forward and lateral constants
are due to an purposed asymmetry in our robot’s design.



6

3.3 Board Designs

RoboIME’s hardware platform can be described by it’s modules: the motor mod-
ule, that gives power to each of the robot’s motors, the kicker module, that
creates and maintains high voltage in capacitors and delivers the stored power
to the coil to activate the kick mechanism, the stamp module, that performs
the embedded computation, the main board module, that provides the modules
physical connections and the communication module, that sends and receives
data to the intelligence, figure 2.

The advantages of a modular hardware design are that it’s friendly for the
maintenance of the project. In addition, two of the modules are commercial and
open source boards, the stamp module is a STM development micro controller
board and the communication module is a generic breakout for the NORDIC
2.4 GHz nrf24l01p transceiver.

For the last LARC competition, new designs were made for the modules
but kept the same architecture, focusing the changes in optimizing the position
of the components, improving the route’s dimension and substituting outdated
components.

Fig. 2. Picture showing all boards: the kicker module at the top, the stamp module
at the center, five motor modules at the sides and one communication module at the
corner. Beneath all, the main board.

Stamp module This module is responsible for performing all the logical func-
tion serving as a brain for the electronic system. The module is a commercial
board the STM32F4-Discovery, it is a development kit that aggregates a arm
cortex m4 microcontroller with a series of peripherals like a debugger, a motion
sensor, two push buttons and two USB plugs.

Motor module There is one motor module board for each of the four wheel’s
motor and one for the dribble motor. If one of them burns out, it is possible to
exchange it quickly.



7

Each board has two IR4427 (MOSFET driver) and two IRF7389 (complemen-
tary half H bridge). These ICs create an H-bridge that allows the microcontroller
to control velocity of a DC motor in both directions converting a digital Pulse
Width Modulation signal into an analog output. In 2016’s new design, the routes
that transported power were changed to planes and were added decoupling ca-
pacitors in the entry of the IRF7389 half bridges.

Main Board The Main Board, figure 3, provides physical support to the other
modules and connection between them and the robot’s actuators, sensors and
battery. Most of the main board are simple routes and planes making these
connections. But it also implements some important circuits:

Fig. 3. Main board’s block diagram

Firstly, the protective and regulation circuit that uses a tank capacitor and
a resettable fuse to limit and regulate the power delivered to each motor motor
module. The circuit also implements the INA220 a current sensor that reads
the current delivered to each motor module and communicates with the stamp
board using I2C. Secondly, the simple circuit that transforms the two cell lithium
polymer battery voltage into 5V in order to feed the stamp board, and also allows
the battery voltage to be read by the stamp board using the sensor class.

The design of this board was also improved for LARC 2016. The through-
hole capacitors and simple fuses were substituted by smd capacitors and modern
smd resettable fuses. The power routes were changed to planes, and the INA220
was added to make it possible to the stamp board to know the current delivered
to each motor module.

Kicker module This module stores power in two electrolytic capacitors of
2200, 200V using a DC-DC step-up circuit controlled by the MC4063 IC that



8

transforms the 7/8V DC of the battery supply into a 180V DC power supply to
charge the capacitors. It also uses two IRFP4868PBF Power MOSFETs driven
by the one IR4427 Mosfet driver to close the high voltage circuit that release
the power stored in the capacitors to one of the coils. The stamp board can also
control the kick speed controlling the signal duration sent to the mosfet driver.

Last year the the step-up circuit’s topology was also modified, a Single-Ended
Primary-Inductor Converter (SEPIC) topology was adopted. This topology has
some advantages compared to the simple boost converter, previously used by
our team, as it isolates with a capacitor the battery power supply from the kick
coil and that way prevents battery short circuit in case of malfunction of the
power mosfets.

This topology was selected after studying the approach used by other teams
of the ssl category, and selecting the one used by the Team Tigers Mannheim
[10].

4 Mechanical Project

This robot was and is being designed using the CAD (Computer Aided Design)
and CAM (Computer Aided Manufacturing) softwares. Tests and analysis are
being made to improve the project that was received from former members of
the team, especially on:

– Making the project more concise, focusing on facilitating the production of
parts and removing unnecessary ones;

– Fabricating a more efficient, it is necessary to improve precision of the control
and to make the parts more resistant.

With these objectives in mind, most of the modifications were made on the
dribbler and the kicking system.

Majority of our components are produced using the CNC (Computer Numeric
Control) method, made of 70-75 aluminum, a material that presents a high
mechanical resistance and is easily milled. Besides, there are also parts made of
brass, cut by a metal lathe, while the remaining are made by a PLA or ABS 3D
printer.

4.1 Productions Methods

Jet cutting The chassis and the superior support, which divides the electronic
components and the battery from the remainder of the robot, are manufactured
using jet cutting. Those parts use aluminum plates of 3mm and 2.5mm, respec-
tively.

CNC milling machine Most of our components are fabricated using a CNC
milling machine. Beforehand the milling process itself, it is necessary to make the
CAM in order to generate the code for the machinery. Some parts are extremely



9

Fig. 4. Picture showing the robot and his computaional model on CAD.

challenging due to their reduced size and complexity. These two factors affect
mostly their measurements, in order to preset the origin, and the manner that
they are placed safely in the machinery, especially during the last stages of
production.

Other methods Other used tools were the 3D printer, lathe, jet-cutting ma-
chine and air shot blasting for the production of parts and their finishing touches.

4.2 Kick

Both the low and high kicks underwent minor alterations so that the milling
could become easier and simpler.

The low kick consists of a kicker, an axis of the low kick, a piston, a frontal
support of the solenoid, a rear support of the solenoid and a solenoid.The high
kick consists of a kicker, a single support for the solenoid, a piston, a solenoid and
a support for the restrain of the piston. Both are activated by two capacitors
that energize the solenoid, making the piston, which is incorporated with the
kicker, thrust forward.

The current project uses elastic bands to bring the piston back in place due
to their price and their efficiency in the process. On the other hand, the low kick
uses a conic spring.

4.3 Dribbler

The design of the dribbler, figure 5, has been improved to yield a better result.
On its older version, the height of the chassis needed to be adjusted so that the
dribbler could hold the ball but this left the chassis too close to the floor, which
hindered the movement of the robot. Another problem of the former project is
that sometimes the ball would not spin even though the adapter of the motor
of the dribbler and the pulley did slide. To solve this, these two parts have been



10

transformed into one that is connected to the axis of the motor, resulting in the
spinning of the ball on the field. Finally, the last issue encountered was an O-ring
used to transmit the pulley to the roller of the dribbler. This ring was tensioned
a great deal, which made the axis of the motor bend, damaging it.

Fig. 5. Picture showing the robot’s dribbler on CAD.

It was concluded through a prototype that these problems were solved in the
new design of the dribbler.

4.4 Transmission system

A system of internal gears was made to transfer the power of the motors to the
wheels. This system brings many advantages when compared to the traditional
method, like avoiding the entrance of debris in the motors, creating a cavity to
apply grease for the lubrication of the gears and a smaller size, for example.

However, there were some difficulties on the fabrication of this component,
especially due to the small size of the teeth, which need to fit on the gear of the
standard motor (the motor used is the Hsiang Neng DC brushed motor of type
HN-GH35GMB). In this motor, the distance between two consecutive teeth is
smaller than 1mm, making the milling complicated.

This part was first produced using the 3D printer of deposition of filament to
print the piece in ABS plastic. Yet, these pieces did not present good results as
they broke very easily and did not exhibit a smooth movement, stopping their
rotation if the force provided was not significant, which prevented a good control
of the robot. This problem was minimized altering the printing method to one
of stereolitography, which is when a beam of laser solidifies a liquid resin layer
per layer, in order to get a good movement. However, the resistance dilemma
was not completely eliminated.

The idea of this updated project is to mill a mold, which will help produce
the components with injection of ABS plastic, a piece of plastic that is made
by high pressure injection, presenting a better resistance than one produced by



11

impression. To obtain a good precision, the negative of the gears teeth will be
made by electrical discharge.

Even though this option is complex and involves a lot of work due to the
creation of the mold, it will result in an extremely quick and cheap production.

Fig. 6. Image showing an exploded view of the transmission system, where it is better
to see his details.

5 Conclusions

For the this competition, we are aiming into continuing the progress established
last year: experimenting a new approach to the software project, modulariz-
ing the electrical project and producing more reliable CADs and CAMs in the
mechanical project.

5.1 Acknowledgement

This research was partially supported by the Army’s Department of Science
and Technology (DCT), Fundação Carlos Chagas Filho de Amparo à Pesquisa
do Estado do Rio de Janeiro - FAPERJ(grant E-26/111.362/2012); Fundação
Ricardo Franco (FRF) and Fábrica de Material de Comunicação e Eletrônica
(FMCE/IMBEL). The team also acknowledges the assistance of Clara Luz de
S. Santos and Jorge L. de Castilho Jr from FMCE. Special thanks to all former
members of RoboIME. Without their support, this team would not be here.

References

1. Nanopb: Protocol buffers with small code size documentation index. https://

jpa.kapsi.fi/nanopb/docs/index.html.
2. Petteri Aimonen. https://github.com/nanopb/nanopb.
3. Bzarg. http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/,

2015.

https://jpa.kapsi.fi/nanopb/docs/index.html
https://jpa.kapsi.fi/nanopb/docs/index.html
https://github.com/nanopb/nanopb
http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/


12

4. Jan L. L. Segre Lucas O. de Lima Naum A. F. Barreira Victor Bramigk Gustavo
C. K. Couto Renan P. Souza Luis D. P. Farias Onias C. B. Silveira Rebeca C.
Brito Carlos A. D. Pinto Johnathan F. Rosa Paulo F. F. Rosa. Roboime: on the
road to robocup 2016.

5. Carla S. Cosenza Clara L. de S. Santos Gustavo C. K. Couto Jan L. L. Segre
Johnathan F. da Rosa Luciano de S. Barreira Luis D. P. de Farias Luis R. L.
Rodrigues Matheus Bozza Onias C. B. Silveira Renan P. de Souza Paulo F.
F. Rosa. Roboime: Team description paper.

6. Google. Protocol buffers. https://developers.google.com/protocol-buffers/.
7. Ramon Jansen. Waypoint navigation with obstacle avoidance for mav’s. 2016.
8. Raul Rojas. Omnidirectional control. 2005.
9. Discovery STM32F4. http://www.st.com/en/evaluation-tools/

stm32f4discovery.html, 2016.
10. Andre Ryll Nicolai Ommer Mark Geiger Malte Jauer Julian Theis. Tigers

mannheim, team description for robocup 2014.

https://developers.google.com/protocol-buffers/
http://www.st.com/en/evaluation-tools/stm32f4discovery.html
http://www.st.com/en/evaluation-tools/stm32f4discovery.html

	RoboIME: on the road to RoboCup 2017

