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Abstract Trajectory learning and generation from
demonstration have been widely discussed in recent years,
with promising progress made. Existing approaches,
including the Gaussian Mixture Model (GMM), affine
functions and Dynamic Movement Primitives (DMPs)
have proven their applicability to learning the features
and styles of existing trajectories and generating similar
trajectories that can adapt to different dynamic situations.
However, in many applications, such as grasping an
object, shooting a ball, etc., different goals require
trajectories of different styles. An issue that must be
resolved is how to reproduce a trajectory with a suitable
style. In this paper, we propose a style-adaptive trajectory
generation approach based on DMPs, by which the style
of the reproduced trajectories can change smoothly as the
new goal changes. The proposed approach first adopts
a Point Distribution Model (PDM) to get the principal
trajectories for different styles, then learns the model
of each principal trajectory independently using DMPs,
and finally adapts the parameters of the trajectory model
smoothly according to the new goal using an adaptive
goal-to-style mechanism. This paper further discusses the
application of the approach on small-sized robots for an
adaptive shooting task and on a humanoid robot arm to
generate motions for table tennis-playing with different
styles.

Keywords Dynamic Movement Primitives, SADMPs,
Trajectory Learning

1. Introduction

Trajectory generation is a fundamental issue in the field
of robotics, the object of which is to output a smooth and
safe path that a moving robot can follow through space.
The generated trajectory can be described as a function
of pose or velocity with respect to time. Traditional
methods generally adopt some predefined functions to
describe the trajectory, then determine the parameters
of the function according to optimization objectives and
constraints [1–3]. This category of method has been widely
and successfully applied in various robotic systems.
However, an artificially predefined function with a fixed
form can hardly be used to accurately describe complex
trajectories. It is also difficult to modify these functions
to produce similar trajectories to adapt to different
dynamic situations, such as a changed destination or a
moving obstacle, without replanning the whole trajectory.
The most recent idea is to learn the trajectory from
demonstrations, which brings challenges to the modelling
of the trajectory but eases the cost of real-time replanning
for new situations. Promising progress has been made in
the published literature, such as GMM [4], affine functions
[5] and DMPs [6].

The methods mentioned above can learn and generalize
the motion styles of the demonstrated trajectories. Here, a
motion style is referred to as a motion sequence which is
distinct in its shape or curve tendency. However, in many
situations, different styles of trajectories will be adopted
for different goals. An example is depicted in Figure
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Figure 1. A two-boundary trajectory planning example. The
robot’s task is to reach the goal. Trajectories in different styles
could be adopted to the triangular goals. As a new circle goal
is set, a new different stylistic trajectory (dashed) should be
generalized to reach the new goal.

1, where two motion trajectories of two different styles
with the same start point but different goal points are
learned. Based on the styles of the these two motions,
any trajectories that start at the same point and end with
a different goal are expected to share similarities in style
with the learned ones and with changes that are as smooth
as possible. A desired reproduced trajectory is shown in
Figure 1, the style of which is different from that of the
two learned trajectories but which integrates their features.
The main focus of this paper is to address the problem
of style-adaptive motion trajectory generation for different
goals based on trajectories of various styles learned from
multiple demonstrations.

In this paper, we propose a style-adaptive trajectory
generation method based on DMPs, which is called ’Style
Adaptive Dynamics Movement Primitives’ (SADMPs). In
SADMPs, demonstrated trajectories are first modelled and
clustered to a series of style-different principal trajectories
using PDM [8]. Next, each principal trajectory is trained
using the DMPs to get its weight parameters. Finally,
an adaptive goal-to-style mechanism merges the weight
parameters of different styles to obtain new weight
parameters according to the changes in goal position.

The main contributions of this paper are:
• A framework for learning and generating

style-adaptive trajectories is proposed, which supports
the generation of new trajectories based on multiple
learned motion examples and which needs fewer
demonstrations.

• An algorithm for fusing and adapting different motion
styles is proposed, which consists of the Least Mean
Squares (LMS) method and a goal-to-style mechanism.
This algorithm blends different motion styles to
generate a new trajectory with a smooth transition.

SADMPs has been successfully applied to our robot in the
Small Size League (SSL) for an adaptive shooting task, as
well as to a humanoid robot arm to generate motions for
table tennis playing with different styles.

The remainder of this paper is organized as follows.
Section 2 introduces the related work about learning
trajectories from demonstrations. In Section 3, we describe
the discrete formalism of the original DMPs. Next, we
propose a framework for the SADMPs and discuss the
learning procedure for the SADMPs in Section 4. Section 5
demonstrates the effectiveness of the proposed method for
the SSL robot and for a striking ball task in the humanoid
robot. Section 6 concludes the paper.

2. Related Work

Billard proposed to model the non-linear dynamical
point-to-point robot motions as a time-independent
system using an iterative algorithm to estimate the form
of the dynamical system through a mixture of Gaussian
distributions [4]. Although this method is suitable for
processing large amounts of motion data due to the
parametric model, it generates discontinuities in the
trajectories. GMM has been used in different robotics
applications, such as gesture imitation [9] and handwriting
[10].

Pham et al. proposed a method using affine trajectory
deformation for motion imitation [5]. This method is
based on the affine invariance of human motion [11],
and makes no use of an exogenous basis function. This
method also allows the deformed motions to preserve the
similar motion styles in relation to the observed one. The
style of the generated motions can only be altered by the
modification of the observed trajectories.

Another pioneering work introduced by Ijspeert et al.
[6] considered a robot’s movement to be a linear spring
system coupled with an external forcing term, which
can be described by a set of differential equations. In
order to obtain the weight parameters using the DMPs
formulations, Ijspeert et al. applied Locally Weighted
Learning (LWL). Schaal introduced an advanced version
algorithm named ’Receptive Field Weighed Regression’
(RFWR) to solve the problem [12] in which the centre and
width of the kernel functions were adjusted automatically.
The RFWR could also select the appropriate number
of kernel functions to fit the training trajectory. The
effectiveness of this method has been validated through
various applications, such as walking [13], flight control
[14] and hitting and batting [15].

The DMPs employed in [6] used a very basic model
to learn a two-boundary trajectory without considering
obstacles and kinematic restrictions. Motivated by the
requirement of high-order continuity, studies[15, 16] were
also conducted to develop extensions and modifications to
DMPs in planning with a non-zero terminal velocity. It
is also easy to extend the DMPs formula with a dynamic
potential field item to achieve obstacle avoidance [17, 18].
Furthermore, a method for the comparison and clustering
of robotic trajectories with human motion data is proposed
in [19], which is applied to achieving motion by learning
from a large set of demonstrations.

The approaches proposed in [4, 6] provide good results
for style-fixed tasks - in other words, the demonstrated
style is always suitable for the new goal. However, in
real environments, the motion styles have functional roles
to solve specific tasks, such as hitting balls or avoiding
obstacles. Matsubara et al. proposed an approach
called ’Stylistic Dynamic Movement Primitives’ (SDMPs)
[7] which controls the motion style by manipulating a style
parameter added to the original DMPs. However, the
mapping between the style parameter and the perceptual
feedback of the motion goal is set by hand in their work,
and is neither automatic nor smooth.
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3. Dynamic Movement Primitives

We firstly briefly introduce the original DMPs using the
same description as in [18]. DMPs explain a movement
using the following set of differential equations for a one
degree-of-freedom (DoF) motor system:

τv̇ = K(g − x)− Dv − K(g − x0)u + K f (u) (1)

τẋ = v (2)

τu̇ = −αu (3)

where
• x is the position,
• v is the velocity,
• x0 is the start position,
• g is the goal position,
• K is the spring constant,
• D is the damping term,
• u is the phase corresponding to time changing from 1

towards 0,
• τ is a temporal scaling factor,
• α is a pre-defined constant,
• f is a non-liner function which simulates an external

force.

Equations (1) and (2) are referred to as the transformation
system while the differential equation(3) is called the
canonical system. In a practical multi-DoF motor
system, every DoF effects the transformation system
independently, but they could share the same canonical
system. Usually, K and D are chosen with special care
so that the transformation system is critically damped.
Moreover, τ and α are also chosen to make u close to
zero. These equations are time invariant and can alter
the duration of a movement by simply changing τ. In
addition, once the non-linear function f is defined, the
style of the resulting trajectory will be determined as well.
Specifically, f can be given as:

f (u) =
∑N

i wiψi(u)u

∑N
i ψi(u)

(4)

ψi(u) = exp(−hi(u − ci)
2) (5)

where ψi are Gaussian basis functions with a centre ci
and a width hi, N is the total number of Gaussian basis
functions, and wi are the weights to learn. An important
advantage of DMPs is that one demonstration can be
imitated by one-shot learning. In order to learn from the
demonstrated trajectory, first the movement x(t) should
be recorded, then its derivative v(t) and v̇(t) for each
time step, t = 0, ..., T, can be solved. By combining
the transformation system and canonical system together,
ftarget(u) is obtained by:

ftarget(u) =
τv̇ + Dv

K
+ (g − x0)u − (g − x), (6)

where x0 = x(0) and g = x(T). The weights wi in (4)
can be calculated by minimizing the error criterion J =
∑( ftarget(u)− f (u))2, which is a linear regression problem
and can be solved efficiently. Once wi is determined for
a demonstration input, the trajectory with a new goal
position can be generalized by resetting g = gnew, x0 =
xcurrent and t = 0. After this setup procedure, τ is adjusted
manually to determine the duration of the movement.

4. Style-adaptive Dynamic Movement Primitives

4.1. System Architecture

Figure 2 shows the architecture of the SADMPs. We
first collect and analyse different motions demonstrated
by a human. The captured motions are modelled and
clustered using PDM [8] in order to get the principal
trajectory of each cluster, which is the average of the
trajectories in a cluster [19]. Next, we train these principal
trajectories using the DMPs trainer separately to get their
weight parameters. Finally, we use the adapter to combine
the training results with the new goal to reproduce new
motions. Here, a new desired goal gnew acts not only on
the transformation system - which is similar to the original
DMPs - but also helps to generate a fused style of the
reproduced motion.

Figure 2. The architecture of the proposed SADMPs model. This
method comprises two parts: one is for learning and the other is
for generalization. The dark green-shaded components constitute
an adaptive goal-to-style mechanism. Two points should be noted
for the extension: 1) the architecture is for one-DoF - J copies of
this architecture could be employed for a J-DoF application; 2)
Although there are only two clusters obtained in this figure, the
SADMPs can work for a situation involving multiple clusters.

PDM is a useful tool for analysing trajectories. In order to
analyse the trajectories using PDM, an adequate number of
movements must be collected from demonstrations. The
recorded trajectories will be cropped so that they start at
the same point and then re-sampled using cubic spline
interpolation so that they contain the same number of
points. The detailed procedure of PDM is depicted in
[8]. Figure 3 shows an example of the data processing
procedure using the PDM.

4.2. Algorithm for Learning

The learning of wnew in SADMPs can be accomplished
in two steps: (I) Obtaining the weight parameters
wk = [w1

k · · ·wN
k ]T 1 for the kth principal trajectory; (II)

Employing an adaptive goal-to-style mechanism to merge
different wk.

4.2.1. Training the Principal Trajectory by LMS

In the first step, and distinct from the training method used
by [6, 12], an LMS method is used to train the parameters

1 The representation of wk is sightly different from Section 3. Here, k is the
kth principal trajectory, N is the number of kernel functions.
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Figure 3. The data processing using the PDM. In (a), two goals
are set and 10 reaching motions are captured for each of the two
goals. Next, the first two components are employed to present
all the trajectories and perform a k-means clustering in the PCA
space, as shown in (b) and (c). Finally, the principal trajectories
are computed, which are the averages of the trajectories for each
cluster in the trajectory space, as in (d).

wk of every principal trajectory in this paper. The main
reason for this design is that the LMS method can obtain
the weight parameters by using the same kernel functions
for different principal trajectories in the same dimension,
which is the basis of the goal-to-style mechanism in the
next step. Compared with the LWL method in [6], LMS
can decrease the computational cost when generating a
new trajectory, particularly when there are many principal
trajectories to be blended in the adapting process. Another
method named ’RFWR’ in [12] can adjust the centre and
width of the kernel functions automatically, but it cannot
guarantee the production of the same kernel functions for
different principal trajectories. So, LMS is chosen as the
learning algorithm in our system. The update rule is:

wi
k ← wi

k − αr
∂( ftarget(u(t))− f (u(t)))2

∂wi
k

, (7)

where αr is the learning rate. Replacing f (u(t)) with
(4) and u(t) = e(−αt/τ) according to (3), we employ
the training method corresponding to the batch gradient
descent on every example in the entire training set at every
time step. As such, (7) can be rewritten as:

wi
k ← wi

k + αr

T

∑
t=0

( ftarget(u(t))− f (u(t)))ψi(u(t))u(t)

∑N
i=0 ψi(u(t))

,

(8)

Usually, a principal trajectory has more than one
dimension and the weight parameters of each dimension
should be learned independently and in parallel. Thus,
in our training process, we consider two rules. First,
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Figure 4. Training using LMS: these two demonstrated
movements are approximated using 15 kernel functions for the
X translational direction in (a) and 10 kernel functions for the Y
translational direction in (b)

for different principal trajectories in the same dimension,
they must have the same kernel functions for training,
which means that the kernel functions are the same
in shape, number and distribution. Second, for one
principal trajectory in different dimensions, different
kernel functions could be chosen for training. For example,
there are two principal trajectories in Figure 4, and each of
them has two dimensions, respectively, in X an Y. Both of
them use the same kernel functions for training, whether
in the X dimension or in the Y dimension. However, the
kernel functions of the X dimension are different from
those of the Y dimension, and the difference includes the
number and distribution of the kernel functions.

4.2.2. Adapting to New Goal

In the next step, an adapter is responsible for the
adaptive goal-to-style mechanism. In the original DMPs
formulations, the goal position g and the temporal scaling
factor τ determines the style of the trajectory. In SADMPs,
we further coupled g to the weight parameters; thus, the
style of a generated motion changes smoothly between
movement primitives of different styles.

The goal of the kth principal trajectory in one-DoF is gk.
We sort the one-DoF goals of all the principal trajectories
in ascending order so that g1 < g2 < · · · < gM, M is
the total number of the principal trajectories. Note that
for different DoFs, the sorting result might be different. If
gk ≤ gnew ≤ gk+1, then gnew can be represented as:
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Figure 5. Reproduced adaptive trajectories in two dimensions -
two principal trajectories are used in this example. The styles of
the reproduced trajectories (green) change smoothly according to
the goal.

gnew =
d(gk)gk+1 + d(gk+1)gk

d(gk) + d(gk+1)
(9)

where d(gk) = |gnew − gk|. Considering the two
transformation systems learned for gk and gk+1, these can
be represented as:

fk(u) =
τv̇ + Dv

K
+ (gk − x0)u − (gk − x), (10)

fk+1(u) =
τv̇ + Dv

K
+ (gk+1 − x0)u − (gk+1 − x). (11)

Since ( fk(u) ∗ d(gk+1) + fk+1 ∗ d(gk))/(d(gk) + d(gk+1)),
we have:

fnew(u) =
τv̇ + Dv

K
+ (gnew − x0)u − (gnew − x), (12)

Then, the new weight parameters wnew for generalization
can be calculated as:

wi
new =




d(gk)wi
k+1 + d(gk+1)wi

k
d(gk) + d(gk+1)

gk ≤ gnew ≤ gk+1,

wi
1 gnew < g1,

wi
M gnew > gM.

(13)
It is clear that the wnew is determined by the distance
between the new goal and the goals of the principal

(a) The camera and robot used in SSL (b) Human demonstration

(c) The omnidirectional vehicle (d) The three DoFs

Figure 6. The robot and scene for motion-capture

trajectories. In other words, the closer a goal is to the new
goal, the more likely it is to be selected in wnew.

When a new goal is set, the non-linear term of DMPs will
drive the system away from its initial state by resetting
the parameters, which is similar to the original DMPs
mentioned in Section 3. The difference with SADMPs
is that the weight parameters are also changed to adapt
to a new goal. Figure 5 shows the adaptively learned
trajectories using formula (13).

The fundamental property of the DMP formulation is that
it is spatially invariant. If we obtain wnew using the linear
superposition rule, such as (13), when gk ≤ gnew ≤ gk+1,
we can ensure that the trajectory will converge to the new
goal accurately.

5. Experiments

In this section, we test the proposed method by conducting
an adaptive shooting task on an SSL platform and compare
our method with the original DMPs quantitatively.
Furthermore, the SADMPs are applied to a humanoid
robot performing a table tennis task.

5.1. Shooting Ball Task in SSL

5.1.1. Testing Platform and Training

The Small Size League (SSL) is the fastest and most intense
game among RoboCup’s soccer competitions. The basic
rules of SSL are based on the rules of a FIFA soccer
game, but each team consists of only six robots playing on
field that is 6.05 m long by 4.05 m wide. There are two
cameras mounted over the field to capture images at 60
Hz for further processing in a shared vision system named
’SSL-Vision’ [20]. This system recognizes and locates the
position and orientation of the robots and the position of
the ball, as shown in Figure 6(a), and then broadcasts the
information package to each team via a network. The team
that scores the most goals wins the game.
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Figure 7. The scene and demonstrated trajectories for the
shooting ball task. (a) A quarter field in the SSL is used for this
experiment, and the shooting task was demonstrated 10 times
for every predefined pose. (b) The recorded data from multiple
human demonstrations.

The robot we used is an omnidirectional vehicle with
four wheels and which can shoot the ball using an
electromagnet-controlled device installed in the front, as
shown in Figure 6(c). The motion of the robot can be
decoupled kinematically into three DoFs: a X translational
direction, a Y translational direction and a W rotational
direction, see Figure 6(d), and our proposed method will
be employed in these three DoFs independently.

In our experiment, we perform a shooting task to test
the method. In this task, the robot should accomplish
two basic subtasks: one is to reach the correct goal pose
without touching the ball; the other is to kick the ball to
the shooting target 2. As the ball may appear anywhere
on the field, different stylistic trajectories will be adopted
according to the position of the ball. As such, we hope
that the robot moves to the ball in a suitable motion style
according to the ball’s location.

In order to accomplish the shooting task, we set a 9×6
grid on the quarter field, such that a golf ball could be
placed at 53 points except for start point, as shown in
Figure 7(a). The initial pose of the robot was at E5, and
the initial orientation was facing towards the shooting
target. Furthermore, the speed of the robot would be zero
when reaching the shooting pose because of the built-in
shooting device. For the learning process, two rules should
be followed when choosing the demonstrated goals: 1)
the stylistic distinction between any two demonstrated
trajectories should be obvious; 2) most of the other goals
should be located between any two demonstrated goals.
According to the two rules, in our experiment, two
demonstrated goal poses were set up, namely B1 and H4.

The experiment was carried out as follows: first, a human
demonstrator moved the robot to perform a shooting ball
task at the goal pose by hand, see Figure 6(b), and 10
demonstrated trajectories for each shooting pose were

2 In the experiment, ’goal pose’ means that the robot needs to reach both
the correct position and orientation, while ’shooting target’ denotes the
soccer goal that the ball should be kicked towards
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Figure 8. Comparison of DMPs and SADMPs in trajectory
generalization and scores for every shooting point. (a) is the
result of the SADMPs method, while (b) is the result of the DMPs
method. For the representation of the score, a dot is drawn at the
end of the trajectory, whereby the colour of the dot denotes the
score (0-blue, 10-red).

collected, see Figure 7(b). Next, we employed the training
algorithm mentioned in Section 4.2 to train different
stylistic trajectories. Note that the different trajectories
share the same kernel functions and canonical system
for each DoF. Finally, the adapter merged the learned
wk in each dimension to generalize to new goals. In
the generalization process, the orientation to the shooting
target was the direction of the red dashed vector which
was drawn from the ball-set position to the target, as
depicted in Figure 7(a).

5.1.2. Results and Comparison

We compare the performance of the proposed approach
and that of the original DMPs method. Because the
original DMPs do not take multiple stylistic trajectories
into account, we choose the weight parameters of the
training pose closest to the new goal for generalization.

In the shooting ball task, the robot should not only reach
the goal pose without touching the ball but also kick the
ball to the shooting target. We repeated the shooting task
10 times in each goal pose and counted the score, as shown
in Figure 8.
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Figure 9. Comparison of the difference between the SADMPs
method and the DMPs method in the PCA space
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Obviously, both methods can reproduce motions which
generalize to the new goal accurately. However, some
trajectories reproduced by the DMPs knock the ball away,
such as the motion to F0 shown in Figure 8(b), and
the robot cannot score in this situation. The SADMPs
method cannot only move the robot to the new target pose
successfully, but it can also kick the ball to the shooting
target with a high score, with the average score percentage
at about 92%, as shown in Figure 8(a). Compared with
the collecting and training method in [19], which made
demonstrations for all the goal poses in a 8×4 grid, our
method only needed to demonstrate two situations.

Figure 9 shows the locations of the 20 demonstrated
trajectories in the space formed by the first two
components of the PDM, which contribute 94.15% to the
total deformation energy in the PCA space. It is noticeable
that both clusters are separated. In order to verify that
SADMPs can generalize an adaptive motion style, we
project several reproduced trajectories with different goals
to the PCA space. In Figure 9, the selected goal poses are
C1, C2, D2, E2, E3, F3, G3 and G4. Compared with the
reproduced trajectories by DMPs, it is clear that the style
points in the PCA space array smoothly from the B1 cluster
to the H4 cluster, rather than the large jump between E2
and E3 as by the DMPs method.

5.2. Striking Ball Task in Table Tennis

The proposed method is also used on a humanoid robot to
play table tennis. We set up a table tennis playing scenario,
as shown in Figure 10(a). The humanoid robot that we
designed is 165 cm in height and 58 kg. Two seven-DOF
arms are equipped on each robot so that they can achieve
flexible table tennis playing and serving. Each robot stands
on one side of a standard table tennis table, which is 2.74
m long, 1.525 m wide and 76 cm high, with a 15.25 cm high
net in the middle of the table. During play, the speed of
the ball varies from 3 m/s to 10 m/s. The detailed joint
parameters are shown in Table 1.

In order to learn from the human, we use an OptiTrack
S250e motion capture system to record the human motion
trajectories which consists of the 3D positioning of optical

(a) Humanoid robot (b) Marker placement

Figure 10. Marker placement for the optical motion capture
system and the humanoid robot platform. The motion of the
marker in the red circle is recorded and trained in Euclidean space.

Joints
Range
(deg)

Maximal
angular
velocity
(rad/s)

Maximal
angular

acceleration
(rad/s2)

Continuous
output
torque
(mNm)

Shoulder
pitch -120∼90 13 293 12000

Shoulder
roll -130∼15 18 225 9720

Shoulder
yaw -180∼90 12 518 5550

Elbow
roll -60∼120 20 380 9600

Elbow
yaw -180∼180 11 190 2600

Wrist
roll -90∼90 10 277 1080

Wrist
pitch -45∼100 4.5 198 1520

Table 1. Joint parameters for seven-DOF manipulation

markers attached on human actors, acquired over 8 ms
intervals, as show in Figure 10(b).

In such a hitting ball task, the forehand and backhand
are considered to be two totally different hitting styles, as
shown in Figure 11. From the end-effector’s (paddle) point
of view, different sides are used, as determined by the
motion of the wrist joints. Considering the end-effector’s
trajectory, its motion style will affect the motion planning
of other joints. As such, in practice the paddle style
(forehand or backhand) is determined according to the
ball’s speed and impact point, ensuring the accuracy of
striking each round. Here, our proposed method is only
used to decide the trajectory of the marker in the red circle
(Figure 10(b)) in a 3D Euclidean space.

In the application, the demonstrated striking position
of the forehand trajectory is [0.5456, 0.2291, 0.6100]m,
and the demonstrated striking position of the backhand
trajectory is [0.6750, 0.4697, 0.5002]m. Next, we employed
our method to learn the weight parameters for the
demonstrations. In the generalizing procedure, in order
to predict the ball’s current position and velocity more
accurately, the raw 3D positions are filtered by a Kalman
filter and the striking point and velocity are calculated

(a) Forehand striking

(b) Backhand striking

Figure 11. Hitting ball task for a humanoid robot playing table
tennis
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(c) Z dimension

Figure 12. The result of reproducing a style-fused trajectory in each dimension

Figure 13. Generalizing to new goals in application to table
tennis

using the method mentioned in [21]. Note that the
robot should strike the ball at a virtual point with a
goal-oriented velocity, so a moving target should be
introduced to the original DMPs differential equations,
detailed in [15]. Finally, the striking primitives will be
generated by SADMPs according to the predicted virtual
striking point and be executed on the robot in a joint-space
using an inverse dynamics control law.

In our experiment, the robot successfully hit the
ball at different positions near the demonstrated
positions if kinematically feasible. Figure 12 is the
result of reproducing a style-fused trajectory in each
dimension - three new reproduced trajectories are
shown in the figure, the striking positions of which
are [0.6021, 0.3912, 0.5305]m, [0.5786, 0.3211, 0.4386]m,
[0.5020, 0.2619, 0.5683]m. Figure 13 shows the result in a
3D Euclidean space.

6. Conclusion

In this paper, we proposed a style-adaptive trajectory
generation method based on DMPs called SADMPs
for learning multiple trajectories from a human’s
demonstrations. This method needs fewer demonstrations
and leads to a smooth transition between different motion
styles. In SADMPs, we first use the Point Distribution
Model to cluster our demonstrated movements in a

PCA space and then calculate the principal trajectory of
every cluster. Next, we train the principal trajectories
independently to obtain the weight parameters based on
Dynamic Movement Primitives. Finally, we proposed a
goal-to-style mechanism for the adaptive changes between
different motion styles. We evaluate this novel approach
in a SSL robot and a humanoid robot. In these cases, our
novel motor primitives generalize smooth and adaptive
trajectories according to the goals.

Our future work will focus on extending the method
to more complicated applications of a humanoid robot
and multiple-agent motion planning in a competitive and
dynamic environment, such as a SSL game.
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