
LTL Templates for Play-Calling Supervisory Control

Thomas B. Apker∗ and Benjamin Johnson†

United States Naval Research Laboratory, Washington D.C.

Laura Humphrey ‡

Air Force Research Laboratory

A Playbook allows operators to design sets of tasks, in an abstract way and before a
mission begins, for a team of vehicles to perform; it also allows an operator to then call
the plays during the mission execution, much like the coach of a human sports team would
during a game. This paper extends this Playbook concept to include a set of assertions that
must be true on each vehicle to ensure successful completion of a play, provides a means of
specifying contingency plans, and translates this extended Playbook into a Linear Temporal
Logic specification that can be used to synthesize a correct-by-construction controller. A
demonstration of this concept is given, and its implications for autonomous systems safety
and reliability are discussed.

Nomenclature

C Boolean Command proposition
B Boolean Behavior proposition
M Boolean Mission Sensor proposition
H Boolean Health Sensor proposition
R Boolean Region proposition
Subscript
i Variable number
c Implies a contingency Behavior

I. Introduction

Unmanned vehicles (UxVs) have proven to be a valuable tool for many scenarios in which manned
operations are unfeasible or undesirable. Most applications to date have employed single vehicles, even though
teams of autonomous vehicles could more effectively accomplish critical, dangerous tasks in environments
too large or dynamic for a single platform. The reason for this is the complexity inherent in multi-vehicle
command and control. In particular, current concepts of operations employ multiple human operators to
monitor each vehicle due to a variety of factors including complexity, safety, and reliability, which makes
coordination of multiple vehicles extremely difficult.

A consistent theme of research into human-robot interaction and interfaces has therefore been an attempt
to address the complexity of multi-vehicle planning. For example, Fern and Shively1 developed a concept
they call the “Playbook” that combines multiple, pre-defined tasks into a set of plays that an operator can
call during the mission, allowing the vehicles to react to certain events autonomously while the operator
focuses on mission-level goals. Similarly, Duquette2 developed the Common Mission Automation Services
Interface (CMASI) to allow operators to specify abstract tasks, such as area searches or orbit points, with
enough information to form the constraints needed to pose a solvable vehicle routing problem, as in Karaman
and Frazzoli.3 Draper et al.4 produced a prototype multi-vehicle control station that uses CMASI tasks to
define portions of a Playbook or “play-calling” interface. The work in this paper extends the Playbook and
play-calling concepts further to address safety and reliability concerns.

∗Computer Engineer, thomas.apker@nrl.navy.mil, AIAA Senior Member
†NRC Postdoctoral Fellow
‡Scientist

1 of 11

American Institute of Aeronautics and Astronautics



UxVs may become unsafe when they act on incorrect or missing information. This can include an actuator
failure that changes vehicle dynamics significantly, loss of communication to a ground station, or a degraded
navigation solution. Once events such as these happen, the UxV is no longer able to complete its original
mission, and it requires some form of intervention to generate a new trajectory or behavior appropriate to
its degraded state. Most autopilots employ some form of finite state machine to handle the worst cases,
often by safely terminating the flight and returning to a default waypoint, but connecting this safety-critical
software with a complex planning system or human interface presents a costly challenge for current software
engineering practices.

This paper examines how correct-by-construction controllers can be used within a play-calling architecture
to address the safety and reliability issues associated with multiple-UxV control with minimal engineering
effort. The key contribution is the idea that a Playbook can be expressed in terms of events the vehicle can
control, i.e. where it goes, what tasks it performs, and events it must react to, including operator commands,
salient events, and hardware faults. We will show how to construct such a Playbook and translate it into a
Linear Temporal Logic (LTL) specification. The LTL specification can then be synthesized into a controller
for each vehicle using the LTL Mission Planning (LTLMoP) toolkit.5

II. Background and Definitions

This paper describes a complex system architecture for a team of autonomous vehicles and uses a number
of technical terms that have specific meanings in the different disciplines involved in this research. For clarity,
this section defines a number of these terms and explains how they are used in this work, as well as how this
usage relates to similar concepts in the artificial intelligence and robotics literature.

A. Plays and Play-Calling

Play-calling as a means of supervisory control was first studied by Fern and Shively1 as a means of increasing
the level of autonomy exhibited by teams of robots engaged in cooperative tasks. Their use of abstract plays,
designed by domain experts and called by non-expert operators, produced a substantial improvement in the
performance of a simulated robot team by offloading computationally intensive processes to the automation,
thus allowing the operators to focus on longer term, team-level goals.

A play is defined in this paper as a representation of multiple courses of action that, when enacted, will
achieve a common goal. In terms of cognitive architectures for instance, plays can be formally represented
as cognitive domain ontologies (CDOs)6 that encode the desired end state (e.g., collect a set of images of a
point) and any constraints (e.g., the type of image to collect) on the system that accomplishes the goal. A
key feature of a play is that it can be designed off-line, before the designer has enough information to generate
a complete, executable plan that could be expressed, for example, as a CMASI “AutomationRequest” in
Duquette.2 In other words, a play contains the questions to ask when forming a concrete plan, and assumes
that the planning system has the means to answer them when the play is called.

B. Reactive Planning

Conventional planning assumes that accomplishing a goal requires completing a serial task sequence.7 Re-
active planning, on the other hand, represents a set of possible plans, often as a Finite State Automaton
(FSA), that encode how to switch between tasks given specific inputs or observations. Examples of such
reactive planning include bio-inspired behavior selection,8 the physics inspired finite state machine in Mar-
tinson and Apker,9 and the patrol allocation system in Mather and Hsieh.10 Patzek et. al.11 describe a
mission planning and supervisory control system that uses an intuitive interface to design a reactive plan.

Representations of tasks, behaviors, and observations are unique to each of the approaches cited above,
but they share the property that the actions the system can take and the observations it can sense have a
Boolean representation. This suggests that, by restricting a set of plays’ unanswered questions to Boolean
predicates, it is possible to generate a single FSA at the beginning of a mission rather than generating a new
plan every time a play is called.

2 of 11

American Institute of Aeronautics and Astronautics



C. Specification of Reactive Plans

Several tools exist to facilitate the synthesis of an FSA from a logical task specification. Two such tools are
the LTLMoP toolkit5 and Temporal Logic Planner (TuLiP).12 The LTLMoP toolkit, which was leveraged for
the work presented here, uses task specifications written in the Generalized Reactivity (1) (GR(1)) subset of
LTL to produce a game that the system plays against the environment.13 If a strategy exists for the system
to win this game (by satisfying the specification), regardless of any allowed changes in the environment, that
strategy can be extracted as a correct-by-construction FSA controller.

Of particular interest in this paper is the structure of a GR(1) specification and the meanings of the
LTL symbols commonly used in such a specification; a more complete definition of the syntax and semantics
of LTL can be found in Emerson.14 An LTL formula of the form �φ (read “always φ”) states that the
sub-formula φ holds true at all times, and a formula of the form �♦φ (“always eventually φ”) states that the
sub-formula φ will repeatedly become true. The formula ©φ (“next φ”) is used to indicate that φ is true in
the next time step. A conjunction of formulas φ1 ∧ φ2 (“φ1 and φ2”) indicates that both of the formulas are
true, while a disjunction φ1 ∨ φ2 (“φ1 or φ2”) indicates that at least one is true. Additionally, the formula
¬φ (“not φ”) is used to indicate the negation of φ. Finally, the logical implication is written φ1 → φ2 (“φ1
implies φ2”), and biconditionality is written as φ1 ↔ φ2 (“φ1 if and only if φ2”).

A GR(1) specification expresses a play in terms of system actions and environment sensors, where the
required behavior of the system φs is specified as a response to observed changes in the environment φe.
Thus, the specification takes the form φe → φs. Both φe and φs include three components: an initial state
φi, transition restrictions φt, and goal requirements φg. The initial states φe,si are given as formulas over
Boolean propositions and define the set of possible initial configurations for the environment and the vehicle.
The transition restrictions (also called “safety conditions”) φe,st are formulas of the form �φ, and define
conditions that must hold at all times, thereby restricting the possible transitions of the system. Finally, the
goal requirements (called “fairness conditions” for the environment and “liveness conditions” for the robot)
φe,sg define the configurations that the environment and robot are required to repeatedly achieve during an
infinite execution.

III. Problem Statement

A conventional plan is brittle because of its serial nature. In general, an automated planner assumes it
knows the state of the world, before, during and after each task. During execution, however, these assumption
may prove to be untrue, and replanning after the original plan’s assumptions fail is both computationally
expensive and cognitively challenging for a human operator. As a result, autonomous systems are often
unreliable and difficult to use. Among the most common sources of planning system failure are:

1. Hardware faults

2. Unscheduled, important observations

3. Changes in operator intentions

A strategy can be robust to predictable problems if it encodes a response for each possible event. However,
designing a strategy is a cognitively intense and error prone task, even for experts, and difficult to do using
synthesis tools based on formal methods. The approach adopted here is to specify a set of plays for an
operator to call (addressing 3), the requirements and triggers for executing them (addressing 2), and a
set of contingency plans for when things go wrong (addressing 1). The approach then translates these
plays, requirements, and contingencies into an FSA that can observe both the vehicle’s environment and the
operator’s intentions and act on them in a safe and correct manner.

The GR(1) subset of LTL allows fast synthesis of FSAs that encode a correct-by-construction strategy
to allow an autonomous vehicle to accomplish its goals in an adversarial environment. The challenge that
this work addresses is how to codify plays as simply as possible in a way that allows them to be translated
into a GR(1) specification and synthesized into an FSA that enables an operator to direct the vehicle via
commanded plays.

3 of 11

American Institute of Aeronautics and Astronautics



IV. LTL Play Calling

In a GR(1) specification, the system controls the actions it takes, as specified in φs. As such, anything
that is directly controlled by the vehicle maps to a Boolean action proposition. As described in Kress-Gazit
et al.,15 this includes both performing a specific behavior or task, B, or going to a specified region, R.
In both cases, the changes in the action propositions that result from a change in the FSA state can be
used to generate a trajectory for a vehicle that advances it towards accomplishing the play’s objective. The
environment controls the events to which the vehicle must react (via the sensor propositions). This includes
the operator’s commands, C, i.e. the play calls themselves, as they are not under the vehicle’s control. It
can also include mission sensors, M , which abstractly represent the output of classifiers that detect salient
features of the vehicle’s environment. Finally, in order to maintain the bisimilarity between the specification
and fault-prone vehicle, the Playbook includes health sensors, H, which represent the output of classifiers
that observe the vehicle’s own capacity to complete the play.

A. Playbook Using Boolean Propositions

To allow scalable play calling, each vehicle must have a Playbook structure that contains the information it
requires to execute one or more plays. Its components are:

1. Vehicle ID: A unique identifier of the vehicle for which the controller is being synthesized

2. Regions Map: A set of LTL safety statements describing the connectivity of the physical environment

3. Play Structures: A list of Play Structures, see Table 1, that define each play that can be called

4. Contingency Structures: A list of Tasks to perform if Health Sensors become false, see Table 2

To enable the synthesis of FSAs with the capabilities and limitations of specific vehicles in mind, each
vehicle is assigned a unique identifier to distinguish it from the other vehicles. By explicitly linking each
template to a specific vehicle (via the Vehicle ID), the generated FSA is guaranteed to be loaded on the
correct vehicle and that the FSA receives appropriate command inputs. In many cases, there will be multiple
copies of the same FSA running on different vehicles with similar or identical capabilities and limitations.

In order to link the vehicle’s tasks and behaviors to the physical space in which it is operating, that
space is discretized into a set of mutually exclusive regions {Ri}. Movement between these regions is then
modeled based on the adjacency of the regions, and formulas are added to the set of robot safety conditions
φst that restrict the transitions of the robot’s state such that the vehicle may only transition to a new state
with the same region or an adjacent region. In some cases, such as an open floor or airspace, it is sufficient
to connect all of the Play Structures’ regions to a single “others” region, Ro. This leads to a star pattern in
the connectivity graph, where a central region is connected to each other region in the graph; an example
of this is given in (1) for a space with two regions of interest: R1 and R2. Note that the last formula in the
Regions Map restricts the state space such that only one region can be true at a time using the exclusive-or
operator Y, where a Y b ≡ ((a ∧ ¬b) ∨ (¬a ∧ b)).

φst = � (R1 → (©R1 ∨©Ro)) ∧
� (R2 → (©R2 ∨©Ro)) ∧
� (Ro → (©R1 ∨©R2 ∨©Ro)) ∧
� (©Ro Y©R1 Y©R2)

(1)

The specific fields that are used to specify a Play Structure and Contingency Structure are shown in
Tables 1 and 2, respectively. In the case of the Play Structure, the Command, Behavior 1, and Health
Sensors fields are required to specify a play, while the Region 1, Mission Sensor, Behavior 2, and Region 2
fields are optional. The translation of a given Play Structure or Contingency Structure into a specification
are discussed in sections B and C, respectively.

B. Parsing Play Structures into LTL

A Play Structure, as shown in Table 1, contains the information required to execute the command C. At
a minimum, this requires a primary Task, B1, and set of health sensors {H}, to allow the parsing tool to

4 of 11

American Institute of Aeronautics and Astronautics



Table 1. Fields of the Play Structure

Name Symbol Description Units

Command C Senses if the Play is active Boolean

Behavior 1 B1 Defines how to accomplish the Play’s primary task CMASI Task

Region 1 R1 Defines the region in which to begin the Behavior 1 Polygon

Mission Sensor M Determines when to switch between B1 and B2 Boolean

Behavior 2 B2 Defines how to accomplish the Play’s secondary task CMASI Task

Region 2 R2 Defines the region in which to begin the Behavior 2 Polygon

Health Sensors {H} Set of Health Sensors that must be true
Boolean Array

to perform the behaviors

Table 2. Fields of the Contingency Structure

Name Symbol Description Units

Health False {Hf}
Set of Health Sensors that must be

Boolean Array
false to trigger the contingency behavior

Health True {Ht}
Set of Health Sensors that must be

Boolean Array
true to perform the contingency behavior

Contingency
Bc

The behavior to perform when the
CMASI Task

Behavior listed health sensors fail

Region R
The region in space to perform

Polygon
the contingency behavior

generate a pair of formulas of the form shown in (2). These LTL statements cause the synthesized FSA to
perform the behavior B1 whenever commanded to by command C, as long as the set of health sensors {H}
permit doing so (i.e., each of the Boolean sensors in the array is true).

φst = �

B1 ↔

C ∧
Hi∈{H}

Hi


φsg = �♦

C ∧
Hi∈{H}

Hi

→ B1

 (2)

In many cases, it helpful to restrict a behavior to a particular region, and so the Play Structure includes
an optional region proposition, R1, which augments the behavior’s safety statement as shown in (3). This
addition to the LTL statement requires that the vehicle first traverse the Regions Map to reach R1, before
it can perform the desired behavior B1. This allows the FSA to handle vehicle path planning in addition to
task assignment.

φst = �

B1 ↔

C ∧R1

∧
Hi∈{H}

Hi


φsg = �♦

C ∧
Hi∈{H}

Hi

→ B1

 (3)

To support automated retasking when a salient event is detected, the Play Structure can contain a
secondary task, B2, second region, R2, and mission sensor, M . This allows the parsing tool to generate
formulas of the form shown in (4), where the vehicle can be commanded to perform behavior B1 until the
Mission Sensor M becomes true, at which point the vehicle will automatically switch to behavior B2. Note

5 of 11

American Institute of Aeronautics and Astronautics



that, while they are included in (4), the regions R1 and R2 can be omitted, if their respective tasks are not
constrained to a particular region.

φst = �

B1 ↔

C ∧
Hi∈{H}

Hi ∧R1 ∧ ¬M


φst = �

B2 ↔

C ∧
Hi∈{H}

Hi ∧R2 ∧M


φsg = �♦

C ∧
Hi∈{H}

Hi

→ (B1 ∨B2)


(4)

This formula allows the UxV to switch tasks when M changes, implicitly forming a two-state FSA
associated with the nominal case of executing the play. With more complex LTL statements, one could link
a single command sensor to arbitrarily complex combinations of Tasks and Mission Sensors, providing an
LTL representation of the controllers described by Patzek et al.11 However, each of these Mission Sensors is a
Boolean classifier operating over noisy inputs, and is thus subject to both false negatives and false positives.
Adding Mission Sensors, therefore, increases flexibility at the cost of reducing reliability.

In this paper, it is assumed that only a single Play is called at a time for a vehicle, as shown in (5), which
states that if command Ci is true, then all other commands Cj are false. This substantially reduces the size
of the synthesized FSA, as there are N command transitions from each state instead of 2N .

φet = �((©C1 → (¬© C2 ∧ . . . ∧ ¬© Cn))∧
� (©C2 → (¬© C1 ∧ ¬© C3... ∧ ¬© Cn))∧
...

� (©Cn → (¬© C1 ∧ ¬© C2... ∧ ¬© Cn−1)))

(5)

To further reduce the size of the FSA, the initial state of the robot and the environment are restricted
as shown in (6). Initially, the Command and Mission Sensors are all false, while the Health Sensors are
assumed to be true. With all commands false, the vehicle will remain in place or orbit an original waypoint,
depending on vehicle dynamics, until one of its Command Sensors becomes true.

φei = ¬C1 ∧ ¬C2 ∧ . . . ∧ ¬Cn ∧ ¬M1 ∧ ¬M2 ∧ . . . ∧ ¬Mn

∧
Hi∈{H}

Hi

φsi = ¬B1 ∧ ¬B2 ∧ . . . ∧ ¬Bm ∧ ¬R1 ∧ ¬R2 ∧ . . . ∧Ro

(6)

C. Parsing Contingency Structures into LTL

The use of Health Sensors in the Play Structures serves two important purposes. The first is that they prevent
a vehicle from attempting to perform a behavior if it is unable to do so. The second is that they classify the
remaining capability of the system and thus support contingency planning. In order to specify contingency
behaviors for inclusion in the FSA, a set of Contingency Structures are included, in a manner similar to
the Play Structures. These Contingency Structures contain the fields shown in Table 2. The set of LTL
formulas generated from a contingency structure takes the form shown in (7). Because the liveness conditions
generated by the Play Structures (i.e., φsg in (2)-(4)) include the health sensors in their preconditions (the
left hand side of the implication), separate liveness conditions must be generated to activate the contingency
behaviors, when appropriate. The liveness condition φsg defined in (7) requires the vehicle to attempt to
perform the contingency behavior Bc when the set of Health Sensors in {Hf} are false and the set of Health
Sensors in {Ht} are true. The safety formula φst in (7) restricts the contingency behavior to only be performed
when all Health Sensors in {Ht} are true, and when the vehicle is in region R.

6 of 11

American Institute of Aeronautics and Astronautics



φst = �

Bc ↔

R ∧
Hi∈{Ht}

Hi


φsg = �♦

 ∧
Hi∈{Hf}

¬Hi

∧
Hj∈{Ht}

Hj

→ Bc

 (7)

V. Demonstration

As a demonstration of the LTL-template Playbook approach, consider an Intelligence, Surveillance, and
Reconnaissance (ISR) mission scenario for one or more unmanned aerial vehicles (UAVs), as depicted in
Figure 1. In this scenario, there are four regions: general airspace Ro, the area around the UAV ground
control station RCS , a building complex near the ground control station RBC , and a forest far away from the
ground control station RF . Using an equation in the form of (1), this yields the connectivity graph shown
in (8).

Ro RBC 

RCS 

RF 

UAV1 

Figure 1. An example UAV ISR mission scenario with four regions and available variables as in Table 3.

φst = � (Ro →©Ro ∨©RCS ∨©RBC ∨©RF ) ∧
� (RF →©Ro ∨©RF ) ∧
� (RCS →©Ro ∨©RCS) ∧
� (RBC →©Ro ∨©RBC) ∧
� (©Ro Y©RF Y©RCS Y©RBC)

(8)

Since the building complex RBC is close to the control station RCS , the scenario assumes that the UAVs
surveilling RBC are able to use a high-bandwidth data link to stream imagery from their sensors back to
the control station RCS . However, since the forest RF is not as close, UAVs surveilling this area must store
imagery from their sensors using onboard memory, then fly back to the control station RCS to upload the
collected imagery for human viewing. For behaviors, the UAVs have atomic tasks available for searching
the entirety of an area, searching the perimeter around an area, automatically tracking a target that has
been detected, uploading stored data through a wireless connection to a receiving station, and landing at a
specified location to refuel.

To construct plays for the Playbook, the behaviors, sensors, and regions listed in Table 3 are used in
the templates given in Tables 1 and 2. Command variables for each play are chosen by the play designer
when creating a new play. For contingencies in this scenario, the primary concern will be the UAVs running
out of fuel. To address this concern, the parameters for the Contingency Structure given in Table 2 are set
to engage in behavior BRefuel, in region RCS , when sensor SFuel is false. The full parameter list for the
Contingency Structure is given in Table 4.

7 of 11

American Institute of Aeronautics and Astronautics



Table 3. Available Template Variables

Behaviors Sensors Regions

BSearchArea
Fly a trajectory that

STarget
The UAV has detected

Ro
covers a region a ground target

BSearchPerimeter
Fly a trajectory on

SDataOut
The UAV has no available

RCS
the border of a region data storage capacity

BTrackTarget
Track a detected

SFuel
The UAV has sufficient

RBC
ground target fuel to continue

BDeliverData
Send or offload

SSensor
The UAVs sensor

RF
stored data is functioning

BRefuel Refuel the UAV

Table 4. The Contingency Structure for the Mission depicted in Figure 1

Health False Health True Contingency Behavior Region

{SFuel} ∅ BRefuel RCS

With the Contingency Structure defined, suppose the play designer wants a play called TrackTargetBC
to search for a ground target inRBC and track it if it is found. The play designer then sets the play parameters
as in Table 5, with the primary behavior as BSearchArea and the secondary behavior as BTrackTarget. The
secondary behavior is activated when a target is found, as indicated by the sensor STarget. Both behaviors are
enabled in region RBC and require that the UAV have sufficient fuel and a functioning sensor, so the Health
Sensors are set to {SFuel, SSensor}. The reactive nature of this play is demonstrated in three different
hypothetical situations shown in Figure 2, Figure 3, and Figure 4, with changes to behaviors and sensor
propositions as labeled. In each of these figures, the UAV starts in Ro near RCS with behavior BSearchArea,
and sensor propositions SFuel and SSensor set to true and STarget set to false. Over the period of time
depicted in Figure 2, the UAV searches RBC but never finds a target or runs out of fuel, so its behavior
never changes. In Figure 3, the UAV finds a target in RBC , causing sensor STarget to become true, enabling
behavior BTrackTarget. And in Figure 4, the UAV finds the target, causing STarget to become true and
behavior BTrackTarget to be enabled; however, it then runs out of fuel so that SFuel becomes false, and
behavior BRefuel is enabled instead. As the UAV goes to refuel, it loses the target and STarget also becomes
false. When the UAV refuels, SFuel becomes true again, and behavior BSearchArea is enabled again.

Suppose the play designer also wants a play called SearchForest, to search the forest in region RF . Recall
that a key difference between regions RBC and RF is that imagery from the UAV can be streamed back
through a live feed from RBC but not from RF . Therefore, the UAV will need to return with its collected
imagery from RF so it can be viewed by a human operator. Anticipating this, the play designer then sets
the play parameters as in Table 6, with the primary behavior as BSearchArea in RF , the secondary behavior
as BDeliverData in RCS , and the Mission Sensor as SDataOut. As with TrackTargetBC , behaviors require
the UAV have sufficient fuel and a functioning sensor, so the Health Sensors are set to {SFuel, SSensor}.

Now suppose that the play designer is concerned about surveilling the perimeter of the forest rather
than its interior. The play designer could then create a play SearchForestPerimeter that is the same as
SearchForest, with the simple change of setting the primary behavior to BSearchPerimeter. The parameters
for this play are as given in Table 7. Figure 5 shows these two plays, in particular how simple switching

Table 5. A play TrackTargetBC to search for and track a target in RBC

Command Behavior 1 Region 1
Mission

Behavior 2 Region 2 Health Sensors
Sensor

CTrackTargetBC BSearchArea RBC STarget BTrackTarget RBC {SFuel, SSensor}

8 of 11

American Institute of Aeronautics and Astronautics



RCS 

BSearchArea 

RBC Ro 

Figure 2. The play TrackTargetBC, assuming no targets are found and fuel remains sufficient

Ro 

RCS 

BTrackTarget 
STarget 

BSearchArea 

RBC 

Figure 3. The play TrackTargetBC, assuming a target is found and fuel remains sufficient

Ro 

RCS 

BTrackTarget 
STarget 

BSearchArea 

RBC 

BRefuel 
¬	  SFuel 

SFuel 
BSearchArea 

BRefuel 

¬	  SFuel 
¬	  STarget 

Figure 4. The play TrackTargetBC, assuming a target is found but then fuel is no longer sufficient

9 of 11

American Institute of Aeronautics and Astronautics



between the two plays is achieved by first enabling the command variable CSearchForest, then later enabling
the command CSearchForestPerimeter. In either case, the UAV will return to RCS if either SFuel or SData

become false, enabling behaviors BRefuel and BDeliverData, respectively.

Table 6. A play SearchForest to surveil and return with imagery of RF

Command Behavior 1 Region 1
Mission

Behavior 2 Region 2 Health Sensors
Sensor

CSearchForest BSearchArea RF SDataOut BDeliverData RCS {SFuel, SSensor}

Table 7. A play SearchForestPerimeter to surveil and return with imagery of the perimeter of RF

Command Behavior 1 Region 1
Mission

Behavior 2 Region 2 Health Sensors
Sensor

CSearchForestPerimeter BSearchPerimeter RF ¬SData BDeliverData RCS {SFuel, SSensor}

Ro 

RCS 

RF 

SearchForest 

SearchForestPerimeter 

Figure 5. Switching between the plays SearchForest and SearchForestPerimeter

VI. Conclusion

The original Playbook concept provided a means for an operator to design tasks for vehicles offline,
when there is time to reason over what a vehicle should do in various circumstances. This extension of
the Playbook architecture gives the operator the ability to specify what must be true to perform those
tasks, as well as provide contingent plans when those assertions fail. By abstractly representing both the
nominal tasks and their requirements as Boolean propositions, we can translate this Playbook into an LTL
specification that produces a correct-by-construction FSA which permits both a simple command interface
and plan monitoring with automatic replanning.

With this system, the complex problem of designing safe and reliable UxV controllers can be reduced to
determining the requirements of each play and implementing classifiers that concretize the Boolean abstrac-
tion used by the FSA. Assuming each portion of the controller (i.e. the guidance system, FSA implementation
and the classifiers) cannot affect the others’ internal state, the components can be tested independently and
in narrowly defined state spaces. This addresses a major problem in the verification and validation of
autonomous systems, in addition to improving their operational utility.

Future research will investigate automating the generation of Health Sensors given the trajectory planner
and guidance systems that will be used to implement each behavior or task, as well as investigating the
impact of uncertain classifiers and how to mitigate it.

10 of 11

American Institute of Aeronautics and Astronautics



Acknowledgments

This work was performed at the Naval Research Laboratory. The authors were funded by the Office of
Strategic Defense.

References

1Fern, L. and Shively, R. J., “A comparison of varying levels of automation on the supervisory control of multiple UASs,”
Proceedings of AUVSIs Unmanned Systems North America 2009 , 2009, pp. 10–13.

2Duquette, M., “The Common Mission Automation Services Interface,” InfoTech at Aerospace, 2011.
3Karaman, S. and Frazzoli, E., “Vehicle Routing with Temporal Logic Specifications: Applications to Multi-UAV Mission

Planning,” Journal of Robust and Nonlinear Control , Vol. 21, 2011, pp. 1372–1395.
4Draper, M., Miller, C. A., Benton, J., Calhoun, G. L., Ruff, H., Hamell, J., and Barry, T., “Multi-Unmanned Aerial Vehicle

Systems Control via Flexible Levels of Interaction: An Adaptable Operator-Automation Interface Concept Demonstration,”
AIAA Infotech@Aerospace (I@A) Conference, 2013.

5Finucane, C., Gangyuan Jing, and Kress-Gazit, H., “LTLMoP: Experimenting with language, Temporal Logic and robot
control,” 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), IEEE, Piscataway, NJ,
USA, 2010 2010, pp. 1988–93, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), 18-22
Oct. 2010, Taipei, Taiwan.

6Douglass, S. and Mittal, S., “A Framework for Modeling and Simulation of the Artificial,” Ontology, Epistemology, and
Teleology for Modeling and Simulation, edited by A. Tolk, Vol. 44 of Intelligent Systems Reference Library, Springer Berlin
Heidelberg, 2013, pp. 271–317.

7Smith, D., Frank, J., and Jonsson, A., “Bridging the gap between planning and scheduling,” KNOWLEDGE ENGI-
NEERING REVIEW , Vol. 15, No. 1, MAR 2000, pp. 47–83.

8Dasgupta, P., “Multi-agent coordination techniques for multi-robot task allocation and multi-robot area coverage,” Col-
laboration Technologies and Systems (CTS), 2012 International Conference on, May 2012, pp. 75–75.

9Martinson, E. and Apker, T., “A Physics Inspired Finite State Machine Controller for Mobile Acoustic Arrays,” Dis-
tributed Autonomous Robotic Systems, 11th Edition, 2014.

10Mather, T. W. and Hsieh, M. A., “Macroscopic Modeling of Stochastic Deployment Policies with Time Delays for Robot
Ensembles,” ijrr , 2011.

11Patzek, M., Rothwell, C., Bearden, G., Ausdenmoore, B., and Rowe, A., “SUPERVISORY CONTROL STATE DIA-
GRAMS TO DEPICT AUTONOMOUS ACTIVITY,” Tech. Rep. 1234567, DTIC, 2013.

12Wongpiromsarn, T., Topcu, U., and Murray, R., “Receding horizon temporal logic planning for dynamical systems,”
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the
48th IEEE Conference on, Dec 2009, pp. 5997–6004.

13Piterman, N., Pnueli, A., and Sa’ar, Y., “Synthesis of Reactive (1) Designs,” Verification, Model Checking, and Abstract ,
2006, pp. 364–380.

14Emerson, E. A., “Temporal and Modal Logic,” Handbook of Theoretical Computer Science, Vol. E, No. 16, July 1990,
pp. 995–1072.

15Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J., “Temporal Logic based Reactive Mission and Motion Planning,”
IEEE Transactions on Robotics, Vol. 25, No. 6, 2009, pp. 1370–1381.

11 of 11

American Institute of Aeronautics and Astronautics


